
From: [REDACTED] <[REDACTED]>
Sent: Tuesday, August 16, 2011 6:48 PM
To: Jeffrey Epstein
Subject: RE: FW: Epidermal Electronics and Electronic Second Skin

steve is great.
:-)

From: Jeffrey Eps=ein [jeevacation@gmail.com]
Sent: Tuesday, August 16, 2011 2:03 AM
To: [REDACTED]
Subject: Re: FW: Epidermal Electronics and Electronic Second Skin

I read it and loved the idea..... how is it going with=steve

2011/8/16 [REDACTED] <=<
href="mailto:[REDACTED]";>[REDACTED]

=nbsp;

From:<=pan style="FONT-SIZE: 10pt"> [REDACTED]
Sent: Monday, August 15, 2011 9:06 PM
To: Bill Gates ([REDACTED]) =
Cc: Boris Nikolic (BGC3) ([REDACTED]); Lowell Wood
([REDACTED])
Subject: Epidermal Electronics and Electronic Second Skin
Importance: Low

Pre=ty neat – I'm not sure if you've seen this.

The=e are a couple of areas where further development is needed...RF communica=ion frequencies change when the circuits are stretched, and dead skin and =weat have to be dealt with during long-term use. These aren't insurmountable complications, though. </=>

Am =ttaching two related papers. Both from Science today. One describes in more detail the "electronic=second skin" and the other about "epidermal electronics."<=u>

The=authors acknowledge medical applications but they seem most interested in =aking this into game controllers. :)

=/u>

=em temporary tattoos fitted with electronics make flexible, ultrathin sensors<=>

By =a href="http://arstechnica.com/author/kyle-niemeyer/" target="_blank"> Kyle Niemeyer

Mod=rn methods of measuring the body's activity, such as electroencephalograph= (EEG), electrocardiography (ECG), and electromyography (EMG), use electri=al signals to measure changes in brain, heart, and muscle activity, respectively. Unfortunately, they rely on bulk= and uncomfortable electrodes that are mounted using adhesive tape and con=ductive gel—or even needles. Because of this, these types of measurements=are limited to research and hospital settings and typically used over short periods of time because the contact= can irritate skin.

The=e limitations may be at an end, however. New research published in Science describes technology that allows electrical measurements (an= other measurements, such as temperature and strain) using ultra-thin poly=ers with embedded circuit elements. These devices connect to skin without =dhesives, are practically unnoticeable, and can even be attached via temporary tattoo.

All=of the necessary components of the devices, including electrodes, electron=c components, sensors, radio frequency communication components, and power=supplies, are set within an extremely thin (about 30 μm) elastic polyester sheet. The sheet has a low elastic =odulus (that is, it's flexible) and no noticeable mass (about 0.09 g), so =ou have a lightweight, stretchable membrane.

Cir=uit elements (such as transistors, diodes, resistors) and sensors are cons=ucted with typical materials like silicon and gallium arsenide, but are l=ned using nanoribbon and micro/nanomembrane elements to allow extremely small but flexible designs.

The=authors refer to their approach as an "epidermal electronic system&qu=t; (EES), which is basically a fancy way of saying that the device matches=the physical properties of the skin (such as stiffness), and its thickness matches that of skin features (wrinkles, cre=ses, etc.). In fact, it adheres to skin only using van der Waals forces—=he forces of attraction between atoms and molecules—so no adhesive mater=al is required. Between the flexibility and the lack of adhesive, you wouldn't really notice one of these attach=d.

One=of the coolest aspects of this technology is the application method: tempo=ary (transfer) tattoo. Yes, the ones you used as a kid, where you hold the=transfer sheet with the design onto your skin then dampen it to dissolve the sheet. Here, they used water-solu=le polyvinyl alcohol (PVA) sheets in the same manner.

For=a power supply, initial designs used silicon photovoltaic cells to generat= electricity, but these are limited to microwatts due to the small area. R=searchers also explored wireless inductive power, where an external transmission coil matches the resonance frequency=of a small inductive coil in the device (it's the same sort of tech that's=used in wireless device chargers). This opens up the door for applications=that need more power than solar can provide, or for devices that work in low-light conditions (under cloth=ng, for example). The authors also suggest future electrical storage using=capacitors or batteries.

As =emonstrations, the authors used their devices to measure heartbeats on the=chest (ECG), muscle contractions in the leg (EMG), and alpha waves through=the forehead (EEG). The results were all high quality, comparing well against traditional electrode/conductive =el measurements in the same locations. In addition, the devices continuous=y captured data for six hours, and the devices could be worn for a full 24=hours without any degradation or skin irritation.

One=interesting demonstration that also suggests future applications was the m=asuring of throat muscle activity during speech. Different words showed di=tinctive signals, and a computer analysis enabled the authors to recognize the vocabulary being used.<=p>

The=team even hooked one of these sensors up to a simple computer game (Sokoban) a=d used throat activity as the controller. Identifying each word took about three seconds using a MATLAB program, but=it had a higher than 90 percent accuracy. While the potential videogame ap=lications are endless, you can also think of other areas, such as silent c=mmunications or better voice recognition software.

[REDACTED]

[REDACTED]

Bill & Melinda Gates Foundation<=>

Phone [REDACTED]

Skype [REDACTED]

Email [REDACTED] <mailto:[REDACTED]>

--

The information contained in this communication is confidential, may be attorney-client privileged, may constitute inside information, and is intended only for the use of the addressee. It is the property of Jeffrey Epstein Unauthorized use, disclosure or copying of this communication or any part thereof is strictly prohibited and may be unlawful. If you have received this communication in error, please notify us immediately by return e-mail or by e-mail to jeevacation@gmail.com <mailto:jeevacation@gmail.com> , and destroy this communication and all copies thereof, including all attachments. copyright -all rights reserved