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Probability theory can be used to model inference under uncertainty. The particular way in
which Bayes’formula is stated, which is of only minor importance in standard probability
textbooks, becomes central in this context. When events can be interpreted as evidences

and Izj}fpnthcscs, Bayes'formula allows one to update one’s beliet’ in a hypothesis in light of
new data,

Is unaided human reasoning Bayesian?

Kahneman and Tversky (1972) affirmed: “In his evaluation of evidence, man is not
Bayesian at all.* In their book Judgment under uncertainty (1982), they attempted to prove
that human judgment is riddled with systematic deviations from the logical and probabilistic
norm. In chapter 18 of the same book David M. Eddy stressed that medical doctors do not
follow Bayes’formula when solving the following task:

The probability that a woman at age 4(0) has breast cancer (B) is 1%. (P(B) = prevalence =
1%)

According to the literature, the probability that the disease is detected by a mammography
(M) is 80%. (PfM+ |B) = sensitivity = 80)%)

The probability that the test misdetects the disease although the patient does not have it is
9.6%. (P(M+ |OB)= 1 - specificity = 9.6%)

If @ woman at age 40 is tested as positive, what is the probability that she indeed has breast
cancer (P(B|M+)?

Bayes'formula yields the following result:

P(M+ | B) ?p(B) - 80% N%

- = =0.078
P(M+|B)?’P(B)+P(M+| B)?P( B) 80%71%+9.6% 799%

P(B| M+) =

Thus, the probability of breast cancer is only 7.8%, while Eddy reports that 95 out of 100
doctors estimated this probability to be between 70% and 80%.

Gigerenzer and Hoffrage (1995) focused on another aspect of the problem: the
representation of uncertainty. In Eddy’s task, quantitative information was given in
probabilities. Gigerenzer and Hoffrage presented Eddy’s problem to medical doctors
replacing probabilities with a different representation of uncertainty, namely natural
frequencies.

In their formulation the task was;

104) out of every 10000 women at age 4() who participate in routine screening have breast
cancer.

80 of every 100) women with breast cancer will get a positive mammography.

95() out of every 990 women without breast cancer will also get a positive mammography.
Here is a new representative sample of women at age forty who get a positive
mammography in routine screening. How many of these women do you expect to actually
have breast cancer?

Now nearly half (46%) of all doctors gave the Bayesian answer: 80 out of 1030 (7.8%).
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What is the crucial property that helps one to find the Bayesian solution? To answer this
question, it is helpful to consider a more general case. In real-life situations, decisions are
usually based on several cues. A medical doctor, for instance, seldom diagnoses a disease
based on a single test. The usual procedure after a mammography is to perform an
ultrasound test (U). For an ultrasound test, sensitivity and specificity are usually given in
the instructions:

P(U+ [B) = 95%

P(U+ |OB) = 4%

In an empirical study, we presented this information together with P(B), P(M+ |B) and

P(M+ |@B) to a group of participants. They were asked: What is the probablity that a

woman at age 40 has breast cancer, given that she has a positive mammography and a
positive ultrasound test?

When given this probability format, only 12.2% of our participants reached the correct
solution (» 2 3 ).

D. Massaro (1998) gave an example describing the same situation with frequencies
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Massaro writes that in the case of two cues ,.a frequency algorithm will not work™ and ..it
might not be reasonable to assume that people can maintain exemplars of all possible
symptom configurations.”

However, his statements are not based on experimental evidence, and his frequency
configuration is not really equivalent to the probability format because he works with

combined sensitivity P(M+ & U+ |B) and combined specificity 1-P(M- & U- |@B).
One possible frequency format, which does correspond to our probability format, is’:

10000 women 100008 women

breast cancer no breast cancer breast cancer no breast cancer

@ 9900) 100 9900
N / \ ¢

M+@ M-@| @w @M- u+® u.(fsm"I f‘;gg\,m @u.
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Figure 3
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In words:

100 out of every 10000 woman at age 40 who participate in routine screening have breast
cancer.

&) vl’_?ff'l-'{?f:l’ T00 women with breast cancer will gff clpﬂﬂ'ff'-’e ’Hammogra‘f}ﬁy_

950 out of every 99N woman without breast cancer will also get a positive mammography.
95 out of 100 women with cancer will get a positive ultrasound test.

396 out of 9900 women, although they do not have cancer, nevertheless obtain a positive
ultrasound test.

How many of the women who get a positive mammography and a positive ultrasound test
do you expect to actually have breast cancer?

14.6% of our participants solved this version correctly.

Another possibility is to consider the tests sequentially. This is possible because the
ultrasound test and the mammography are conditionally independent, i.e. P(U+ |B) =

P(U+ |B & M+). Now we have ":

0000y women

breast cancer no breast cancer
f

@ 9900

In words:

100 out of every 10000 women at age 40 who participate in routine screening have breast
cancer.

80 of every 100 women with breast cancer will get a positive mammaography.

950 out of every 9900 women without breast cancer will also get a positive mammaography.
76 out of 80 women who had a positive mammography and have cancer also have a
positive ultrasound test.

38 out of 950 women who had a positive mammography, although they do not have
cancer, also have a positive ultrasound test.

How many of the women who get a positive mammography and a positive ultrasound test
do you expect to actually have breast cancer?

53.7% of our participants solved this task correctly.
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Not all frequencies in the tree were actually used. The next step is to eliminate all
frequencies irrelevant to the task. Thus we obtain:
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Figure 5
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These frequencies, namely those that really foster insight, deserve a special name. We
decided to call them Markov frequencies because of the natural analogy with Markov
chains. In fact:

1) Our tree consists of two chains which are joined at the root.

2) Each node corresponds to the reference class that determines the next node. Asin a
Markov chain, the frequency in each node depends only upon its predecessor, not upon
previous nodes.

Being able to “think in chains™ seems crucial for human insight and fits the modern view
that problem solving, unlike perception, 1s sequential rather than parallel. Markov
frequencies are task-oriented, i.e., only information that is relevant for the task appears in
the tree. Gigerenzer and Hoffrage (1995) also used a tree (see Figure 1). Their tree

contains the information (P(T- |B) and P(T- |@B)), which is not relevant to the question
“P(B|T+) =7". In our chains, the odds of the problem can be read directly from the last two

nodes. This is because the tree with Markov frequencies corresponds to the well-known
likelihood-combination rule (see, for instance, Spies, 1993):

prior odds - product of the likelihood ratios = posterior odds

100
The pri 5 fi t : .
¢ prior odds for breast cancer are 9900
L o - : ’ . 8O
Multiplying this with the likelihood ratio for the mammeography ', we obtain 950 °

7
Again multiplying this with the likelihood ratio of the ultrasound test, we finally get 3: .

By using Markov frequencies, it is not only clear which information should be given to

experts, but also which information should be omitted”. Appropriately deleting useless
information is part of the overall computation, as we know from information theory.
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Footnotes

1) To integrate the research on this topic, we borrowed concepts from various
sources and explored them in the breast cancer example. In fact, Gigerenzer and
Hoffrage used a sample of 1.000 (not 10.000) women, Massaro speaks of
symptoms instead of tests and we tested our subjects with _tuberculosis tasks"
instead of , breast cancer tasks."

2) Gigerenzer and Hoffrage stressed that only frequencies work that can be
sampled ,,naturally”. A doctor would get information of this kind when he
samples instructions for different tests and translates the information therein into
frequencies.

3) A doctor would get information of this kind when he samples patients with
respect to their state of illness.

P(M+ /B) ... 80%

4) The likelihood ratio L(B, M+) is defined by PM+ I~ B)’ g 0.6,

L]

9
The likelihood ratio L{B, U+) therefore is 1150;’@ =23.75

5) Because Bayes™formula can be used to model inference under uncertainty, it is
also a tool in scientific reasoning. Klaus Hasselmann from the Max Planck
Institute for Meteorology in Hamburg is presently applying a Bayesian
analysis to hypotheses about changes in climate. The Society for Mathematics
and Data Analysis in St. Augustin is investigating various methods for
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estimating credit risks, such as analysis of discriminance, fuzzy-pattern
classification, and neural networks with the help of Bayes’theorem. The
Krebsatlas™ (almanac of cancer patients) for Germany is being reviewed at the
Ludwig Maximilian University in Munich by means of Bayesian methods. The
task is to detect and eliminate spurious correlations. Even the Microsoft Office
Assistant uses Bayesian procedures. The mathematician Anthony O° Hagan
elicits” on behalf of the Britsh government hydrological conductivity of the rock
at Sellafield from experts. He uses their beliefs to determine a prior distribution,
with which the appropriateness of the area as a permanent diposal site for nuclear
waste can be estimated (Neue Ziircher Zeitung, May 13, 1998, 5.39.). Even the
most expert systems are based on Bayes'formula. A famous example is MUNIN
(Muscle and Nerve Inference Network) from Lauritzen and Spiegelhalter (1988),
which is used for making diagnoses on the basis of measurements of muscular
electrical impulses (,.electromyography™).

Maybe Markov frequencies can also help to facilitate programming those expert
systems.
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