
From: Joscha Bach <[REDACTED]>
Sent: Monday, February 19, 2018 9:32 PM
To: Jeffrey Epstein
Subject: Re:
Attachments: signature.asc

Learning is function approximation. It happens by a computable function that creates another computable function (which then performs organismic regulation or whatever we want). Stochastic gradient descent =ackpropagation on ANNs is one example of a computable function that =reates computable functions.

I would try to derive learning theory starting from cybernetic regulation, then the Good Regulator theorem (regulators need models that =re isomorphic to the system they regulate), and then explain how to =uantify and justify confidence in whether a model is isomorphic to =round truth. The question of whether available observations can be =ranslated into a function in a single step or gradually depends both on =he algorithm and the quality of the model. In principle, one shot =earning requires a model that already captures so much invariance that =ts behavior can be adapted by updating a single latent variable.

> On Feb 19, 2018, at 07:15, jeffrey E. <jeevacation@gmail.com> wrote:
>
> i also see no learning in your system .?. either it instantaneious. = fixed time and fixed time for each . computation
though answer =artilaly known?
>
> On Mon, Feb 19, 2018 at 6:24 AM, Joscha Bach [REDACTED] =rote:
>
>
> As you may have noticed, my whole train of thought on computationalism =s based on the rediscovery of intuitionist
mathematics under the name =computation".
> <http://math.andrej.com/wp-content/uploads/2014/03/real-world-realizabil>
> ity.=df
>
> The difference between classical math and computation is that =lassically, a function has a value as soon as it is
defined, but in the =computational paradigm, it has to be actually computed, using some =enerator. This also applies for
functions that designate truth. For =omething to be true in intuitionist mathematics, you will always have =o show the
money: you have to demonstrate that you know how to make a =rocess that can actually perform the necessary steps.
>
> This has some interesting implication: computation cannot be =aradoxical. In the computational framework, there can
be no set of all =ets that does not contain itself. Instead, you'd have to define =unctions that add and remove sets from
each other, and as a result, you =ight up with some periodic fluctuation, but not with an illegal state.
>
> Intuitionist math fits together with automata theory. It turns out =hat there is a universal computer, i.e. a function that
can itself =ompute all computable functions (Turing completeness). All functions =hat implement the universal computer
can effectively compute the same =et of functions, but they may differ in how efficiently they can do it. =fficiency relates
to computational complexity classes.
> The simplest universal computers known are some cellular automata, =ith Minsky and Wolfram arguing about who
found the shortest one. =oolean algebra is Turing complete, too, as is the NAND gate, the lambda =alculus, and almost
all programming languages. The Church Turing thesis =ays that all universal computers can compute each other, and
therefore =ave the same power.

>

> I suspect that it is possible that the Church Turing thesis is also a =physical law, i.e. it is impossible to build physical computer that can =alculate more than a Turing machine. However, that conflicts with the =traditional intuitions of most of physics: that the universe is =eometric, i.e. hypercomputational. The fact that we cannot construct a =hypercomputer, not just not in physics, but also not mathematically =where we take its existence as given when we perform geometry), makes =e suspect that perhaps even God cannot make a true geometric universe.

>

> How can we recover continuous space from discrete computation? Well, =pacetime is the set of all locations that can store information, and =he set of all trajectories along which this information can flow, as =een from the perspective of an observer. We can get such an arrangement =rom a flat lattice (i.e. a graph) that is approximately regular and =ine grained enough. If we disturb the lattice structure by adding more =inks, we get nonlocality (i.e. some information appears in distant =attice positions), and if we remove links, we get spatial superposition =some locations are not dangling, so we cannot project them to a single =oordinate any more, but must project them into a region).

>

> On the elementary level, we can define a space by using a set of =objects, and a bijective function that maps a scalar value to a subset =f these objects. The easiest way of doing might be to define a typed =elationship that orders each pair of objects, and differences in the =calar are mapped to the number of successive links of that relationship =type. We can use multiple relationship types to obtain multiple =imensions, and if we choose the relationships suitably we may also =construct operators that relate the dimensions to each other via =ranslation, rotation and nesting, so we derive the properties of =euclidean spaces.

>

>

>

> To get to relativistic space, we need to first think about how =nformation might travel through a lattice. If we just equalize value =ifferentials at neighboring locations, we will see that the information =issipates quickly and won't travel very far. To transmit information =ver large distances in a lattice, it must be packaged in a way that =reserves the value and a momentum (in the sense of direction), so we =an discern its origin. A good toy model might be the Game of Life =utomaton, which operates on a regular two dimensional lattice and =llows the construction of stable, traveling oscillators (gliders). In =ame of life, only the immediate neighbor locations are involved, so =liders can only travel in very few directions. A more fine grained =omentum requires that the oscillator occupies a large set of adjacent =attice locations. SmoothLife is a variant of Game of Life that uses =ery large neighborhoods and indeed delivers stable oscillators that can =ravel in arbitrary directions.

> I think I have some idea how to extend this toy model towards =cillators with variable speed and more than two dimensions. It may =Iso possible to show that there are reasons why stable traveling =cillators can exist in 1d, 2d and 3d but not in 4d, for similar =asons why stable planetary orbits only work in 3d.

>

> To give a brief intution about a traveling oscillator as a wavelet: =hink of a wavelet as two concentric circles, one representing the =eviation above zero, the other one the deviation below zero. They try =o equalize, but because the catch up is not immediately, they just =witch their value instead. (This is the discretized simplification.) =ow displace the inner circle with respect to the outer one: the =rrangement starts to travel. Making the pattern stable requires =istorting the circles, and probably relaxing the discretization by =ncreasing the resolution. The frequency of the wavelet oscillation is =nversely related to how fast it can travel.

>

> You can also think of a wavelet as a vortex in a traveling liquid. The =ortex is entirely generated by the molecular dynamics within the =iquid (=hich are our discrete lattice computations), and it does not =dissolve =ecause it is a stable oscillator. The vortex can travel =perpendicular =o the direction of the fluid, which is equivalent to =traveling in =pace. It cannot go arbitrarily fast: the progression of =the liquid =efines a lightcone in which each molecule can influence =other =olecules, and which limits the travel of every possible vortex. > Also, =he faster the vortex moves sideways, the slower it must

> oscillate, because the both translation and state change depend on
> sharing the same underlying computation. It will also have to contract
> in the direction of movement to remain stable, and it will be
> maximally contracted at the order of the light cone. (The contraction
> of a vortex is equivalent to giving it a momentum.)
>
> An observer will always have to be implemented as a stable system capable of state change, i.e. as a system of vortices
that interact in such a way that they form a multistable oscillator that can travel in motion. From the perspective of the
observer, time is observed rate of state change in its environment, and it depends on its own rate of change, which in
turn depends on the speed of the observer. This gives rise to relativistic time. Also, the observer does not perceive itself
as being distorted, but it will normalize itself, and instead perceive its environment around itself as being distorted. As a
result, the observer will always have the impression to travel exactly in the middle of its light cone. This model seems to
recover Lorentz invariance, but with a slight catch: it seems to me that while speed of light is constant and there is no
preferred frame of reference wrt acceleration, the resolution of the universe changes with the speed of the observer.
no idea if this is a bug or a feature, or if it will be neutralized by something I cannot see yet before I have a proper
simulation.

>
> Obviously, all of the above is just a conjecture. I can make a convincing looking animation, and I am confident that
many features like simultaneity etc. will work out, but I don't yet know if a proper numeric simulation will indeed work
as neatly as I imagine.

>
>
>
>
>
>
> > On Feb 18, 2018, at 09:00, jeffrey E. <jeevacation@gmail.com> wrote:
>>

>> i want to hear more on your views on projection spaces. . also feel free to put some more meat on the bones of
the thinking re lorentz transformations

>>
>> --
>> please note
>> The information contained in this communication is confidential, may
>> be attorney-client privileged, may constitute inside information,
>> and is intended only for the use of the addressee. It is the
>> property of JEE Unauthorized use, disclosure or copying of this
>> communication or any part thereof is strictly prohibited and may be
>> unlawful. If you have received this communication in error, please
>> notify us immediately by return e-mail or by e-mail to
>> jeevacation@gmail.com, and destroy this communication and all copies
>> thereof, including all attachments. copyright -all rights reserved

>
>
>
>
> --
> please note
> The information contained in this communication is confidential, may
> be attorney-client privileged, may constitute inside information, and
> is intended only for the use of the addressee. It is the property of
> JEE Unauthorized use, disclosure or copying of this communication or
> any part thereof is strictly prohibited and may be unlawful. If you

> have received this communication in error, please notify us
> immediately by return e-mail or by e-mail to jeevacation@gmail.com,
> and destroy this communication and all copies thereof, including all
> attachments. copyright -all rights reserved