
From: Joscha Bach [REDACTED]
Sent: Sunday, January 21, 2018 1:33 AM
To: Jeffrey Epstein
Subject: Happy Birthday! And a great time!
Attachments: signature.asc

Dear Jeffrey,

I hope this one will be an inspiring, healthy and in every way worth =ile year to you!

I don't know what your mind is up too these days and I always interested =o hear about it. I just thought a bit about time, this weird thing...= Subjective time can be abstracted into the mentally represented events, =hich are partially ordered by relations that encode (in degrees of =ncreasing distinction) non-simultaneity, succession, interval and =emporal distribution, and anchored to temporal events by co-occurrence =elations. Subjective time spans that are not anchored to neural clock =enerators tend to reflect the density of novel elements we experienced, =ecause these are disproportionately stored in the temporal protocol of =ur attention that we remember as our stream of consciousness. It seems =hat due to a decreasing frequency of novelty in the course of our life, =he subjective middle of the life of an 90 year old would be around 18, =erhaps echoing the ubiquitous law of Pareto.

Our physical time is relativistic, of course: the rate of change an =bserver witnesses in its environment, which is relative to the rate of =hange in the observer itself. Particles that don't undergo state change =on't witness relativistic time, and from my computationalist =erspective, that corresponds to all underlying computation being =plied to their momentum, i.e. the rate at which they are copied along =he computational graph of the universe. The higher the rate of state =hanges in a particle, the slower the rate at which it propagates =elative to its environment.

Time is crucial, because it captures change, and without change, =nformation has no meaning. Nothing has a discernible property unless =his property can be compared to something: information is discernible =ifference, and all discernment requires a computable function that =quires a change of state. The meaning of information is its =elationship to changes in other information.

Computationalist time may be just this: elementary state change of a =omputational substrate. From the perspective of an embedded observer, =e won't be able to discern the nature of that change itself, because =rom the perspective of the emergent patterns that form the causal =tructures of our own dynamics, they are functionally the same. Yet its =ascinating to speculate about the ground truth of change.

In eternalist time, all time points are simultaneously instantiated (yet =s embedded observers only see one of them, or rather, we are =onstituted in the relation between adjacent states).

If a universe has multiple possible timelines, these might be =nstantiated in parallel; let's call it "fat time". Embedded observers =on't know about the other parts of the instantiated space of =ossibilities, but only about the parts looping back to its trajectory =n the computational graph.

Dual state time may be an implementation of a universe where only input =tate and output state if the universe transition function exist.

There might also be a just a global single state time, where the =nverse transition function alters the present state in-place all at =nce, and only a single time slice of the universe does actually exist.

And of course, there could be also a local single state time, a giant =ubstrate graph, in which a single read/write head only ever changes one =it at a time.

Most models of foundational physics operate with a continuous temporal dimension, but I think I can see how we get Lorentz invariance in a discrete universe, too. I am wary of continuous time, because it is hypercomputational; it requires Turing machines that run to infinity in a single step, which means that the gods have to buy infinitely more expensive computers when they build their universes, and worse, it creates ugly wrinkles in our axiomatic systems that we don't know how to fix. It is not just that we have difficulty building hypercomputers as physical objects, I also have trouble to abstractly build them from first principles in all other universes I can think of. I think that is related to the my suspicion that our exploration of mathematics is exclusively done via processes of construction that all turn out to be computational themselves, not hypercomputational, but I will have to find out much more about this before I think I could prove that hypercomputers are indeed and surprisingly also a mathematical impossibility, and our universe must be fully discrete.

Regardless of this, and with my fondest regards to you, and deepest thanks for your support, I wish you a great time!

Joscha