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There are deep. yet largely unexplored connections between com-
puter science and biology. Both disciplines examine how information 
proliferates in time and space. Central results in computer science 
describe the complexity of algorithms that solve certain classes of 
problems. An algorithm is deemed efficient if it can solve a problem 
in polynomial time, which means the running time of the algorithm 
is a polynomial function of the length of the input. There are classes 
of harder problems for which the fastest possible algorithm requires 
exponential time. Another criterion is the space requirement of the 
algorithm. There is a crucial distinction between algorithms that can 
find a solution. verify a solution. or list several distinct solutions in 
given time and space. The complexity hierarchy that is generated in 
this way is the foundation of theoretical computer science. Precise 
complexity results can be notoriously difficult. The famous P=NP 
question is one of the hardest open problems in computer science 
and all of mathematics. Here we consider simple processes of eco-
logical and evolutionary spatial dynamics. The basic question is: 
what is the probability that a new invader (or a new mutant) takes 
over a resident population? We derive precise complexity results for 
a variety of scenarios. We therefore show that some fundamental 
questions in this area cannot be answered by simple equations. 

Significance 
There is a deep connection between computer science and bi-
ology. as both fields study how information proliferates in time 
and space. In computer science, the space and time require-
ments of algorithms to solve certain problems generate com-
plexity classes, which represent the foundation of theoretical 
computer science. The theory of evolution in structured pop-
ulation has provided an impressive range of results. but an 
understanding of the computational complexity of even sim-
ple questions is still mitering. In this work we prove unex-
pectedly that some fundamental problems in ecological and 
evolutionary spatial dynamics can be precisely characterized 
by well-established complexity classes of the theory of com-
putation. Since we show computational hardness for several 
basic problems, our results imply that the corresponding ques-
tions cannot be answered by simple equations. For example. 
there cannot he a simple formula for the fixation probabil-
ity of a new mutant given frequency, dependent selection in 
a structured population. We also show that some problems, 
such as calculating the molecular clock of neutral evolution in 
structured populations, admit efficient algorithmic solutions. 
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Evolution occurs in populations of reproducing individu-
als. Mutation generates distinct types. Selection favors some 
types over others. The mathematical formalism of evolution 
describes how populations change in their genetic (or pheno-
typic) composition over time. Many papers study evolution-
ary dynamics in structunid populations [I. 2, 3, 4, 5, 6, 7. 8.1
Spatial structure can affect the rate of neutral evolution [91. 
There are results that describe which spatial structure; do or 
do not affect the outcome of constant selection [10, 11, 121. 
Constant selection refers to a situation where the compet-
ing types have constant reproductive rates independent of 
the composition of the population. Sonic population strew-
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tures can be amplifiers or suppressors of constant selec-
tion [13. 6, 141 meaning that. they modify the intensity of 
selective differences. A large literature deals with evolu-
tionary games [15, 16, 17. IS, 191 in structured populations 
[1, 20. 21, 22, 23. 24, 25, 26, 27, 281. In evolutionary games the 
reproductive success of an individual depends on interactions 
with others. Many population structures and update rules 
can affect the outcome of evolutionary games. For example, 
spatial structure can favor evolution of cooperation [1, 291. 

In this paper we are interested in stochastic evolutionary 
dynamics in populations of finite size. A typical setting is 
provided by evolutionary graph theory [6, 30, 31, 32, 33. 341. 
The individuals of a population occupy the vertices of a graph. 
The links determine who interacts with whom for receiving 
payoff and for reproduction. There can be a single graph for 
game dynamical interaction and evolutionary replacement. or 
the interaction and replacement graphs can be distinct. 1351. 
Often the graph is held constant during evolutionary updat-
ing, but it is also possible to study dynamically changing 
graphs [36, 37. 38, 39, 40, 41. 42, 43. 441. 

The study of spatial dynamics also has a long tradition in 
ecology [45. 46. 47, 48. 491. Here the typical setting is that 
different species compete for ecological niches. Many evolu-
tionary models are formally equivalent to ecological ones - es-

pecially if we consider only selection and not mutation. Then 
we can interpret the different types as individuals of different 
species. 

This paper is structured as follows. First we give an in-
tuitive account of the foundation of theoretical computer sci-
ence. We describe classier of problems that can be solved by al-
gorithms in certain time and space constraints. Subsequently 
we present two simple problems of evolutionary dynamics in 
spatial settings. The first problem is motivated by a very 
simple ecological dynamic: the second problem is the general 
setting of evolutionary games on graphs. In both cases, the 
basic question is to calculate the take over probability (or 
fixation probability) of a new type. That is we introduce a 
new type in a random position in the population and we ask 
what is the complexity of an algorithm that can characterize 
the probability that the new type takes over the population 
(becomes fixed). Unexpectedly we are able to prove exact 
complexity results (see Table I). 
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The class PTIME (denoted as P) consists of problems 
wham solutions can be computed by an algorithm that trues 
polynomial time. This means the running time of the algo-
rithm grows as a polynomial function of the size of the input. 
In computer science, PTIME represents the doe: of problems 
which can he solved efficiently. 

The class NP (non-deterministic polynomial time) con-
sists of problems, for which solutions exist that are of poly-
nomial length, and given a candidate for a solution of poly-
nomial length, whether the candidate is indeed a solution can 
be checked in polynomial time. Therefore, an NI' algorithm 
can verify a solution in polynomial time. 

In order to proceed further. we need the notion of 'reduc-
tion' between classes of problems. A reduction, from a given 
problem Pt to n problem P2. is a translation such that a so-
lution for P3 can provide a solution for Pr . More precisely, 
if there is a polynomial-time reduction from Pr to P2, then a 
polynomial-time algorithm for Pz implies a polynomial-time 
algorithm for Pi. 

A given problem is NP-hard if for every problem in NP 
there is a polynomial reduction to the given problem. A prob-
lem is NP-complete, if it is both NP-hard, as well as there is 
an NP algorithm for the problem. 

For example. consider a Boolean formula over variables. 
and the question whether there exists an assignment to the 
variables such that the formula is true. A polynomial candi-
date solution is an assignment of truth values to variables, and 
given a candidate assignment the formula can be evaluated in 
polynomial time. This is the famous satisliability, SAT, prob-
lem in computer science. The SM' problem is NP-complete. 

The clam P is contained in NP. and a major. long-standing 
open question in computer science is whether P=NP? A 
polynomial-time algorithm for an NP-complete (or an NP-
hard) problem would imply that P=NP, resolving the long-
standing open problem. 

The class #P (sharpP) intuitively corresponds to count-
ing the number of solutions. A problem is in #1' if it counts 
the number of distinct solutions such that (i) every peesible 
candidate for a solution is of polynomial length, and (ii) given 
a candidate for a solution, it can be checked in polynomial 
time whether the candidate is a solution. For example. given a 
Boolean formula, the problem whether there are at least k dis-
tinct satisfying assignments to the formula is a #l'-problem. 
A given problem is #P-hard, if for every #P-problem there 
is a polynomial-time reduction to the given problem. A #P-
complete problem is a problem that is both #P-hard, and 
there is a #P-solution. For example, counting the number of 
solutions in SAT is #P-complete. 

The class NI' is contained in #1' because given the enu-
meration of solutions for #P, it is easy to check if there exists 
at least one solution. Intuitively, an NI' problem asks whether 
there is at least one solution, whereas #P is the counting ver-
sion which asks if there are least k distinct solutions (and the 
special case of k = I gives NI'). Again a major open question 
is whether NP=#1)? Note that a polynomial-time algorithm 
for a #P-complete problem would be an even bigger result as 
it would imply both P=NP and P=#1'. 

The clam PSPACE, consists of problems which can he 
solved with polynomial space. Note that n polynomial space 
algorithm can reuse space and can in general require exponen-
tial time. Every #P problem can be solved in PSPACE by 
simply enumerating each candidate for a solution and check-
ing if it is a solution. Since we can reuse space to enumerate 
the candidates for solutions, the enumeration can be achieved 
in polynomial space. Moreover, every polynomial-time al-
gorithm uses  at most polynomial space. I  it follows 
that #1' is contained in PSPACE. The notion of PSPACF.-
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hardness and PSPACE-completeness is similar to the notion 
of NP-hardness and NP-completenets, but with respect to the 
problems in PSPACE. Again a long-standing open question in 
computer science is whether #P=PSPACE, and a polynomial-
time algorithm for a PSPACE-complete (or PSPACE-hard) 
problem would imply P=NP=#P=PSPACE. 

We have mentioned that the major questions about the 
equality of the complexity dames are open problems, but the 
widely believed conjecture is that P is strictly contained in 
NP. NP is strictly contained in #1'. and #1' is strictly con-
tained in PSPACE. In other words. it is widely believed that 
MP-complete problems cannot he solved in polynomial time, 
#P-complete problems are harder than NP-complete prob-
lems, and PSPACE-complete problems are harder than #P-
complete problems. A pictorial illustration of the complexity 
classes is shown in Figure I. 

The first problem is motivated by ecological dynamics. 
There is an ecosystem occupied by resident species. The spa-
tial structure of the ecosystem is given by a graph. An in-
vading species is introduced (see Figure 2 for an illustration). 
We assume the invading species has a competitive advantage 
in the sense that once a position is occupied by the invading 
species the resident cannot get it back. The invading species, 
however, has a density constraint: if the number of invader,. 
around a focal invader is above a threshold, h, then the In-
vader in the focal node can not colonize another node. 

We are interested in the probability that the invader start-
ing from a random initial position will take over the entire 
ecosystem (and therefore drive the resident to extinction). 
There are two types of questions. The 'qualitative question' 
is whether the take over probability is greater than zero. The 
'quantitative question' is concerned with computing the take 
over probability subject to a small error. Figure 2 gives a pic-
torial illustration. We prove the following results. The quali-
tative question is NP-complete (SI Theorem 1). The quanti-
tive question is #P-complete (SI Theorem 8). 

The second problem is concerned with evolutionary game; 
in structured populations. There are two types, A and B. 
whose reproductive rates depend on local interactions. We 
consider the setting of games on graphs. Each vertex is occu-
pied by one individual. which is either A or B. Interactions 
occur pairwise with all neighbors. The payoff matrix is given 
by 

A B 
A ( o b ) (I)
B c d 

The entries of the payoff matrix can he positive or negative 
(or zero). Each individual interacts with all of its neighbors 
on the graph to derive a payoff sum. The payoff sum is trans-
lated into reproductive success as follows. If the payoff sum 
is positive. then the fecundity equals the payoff sum. If the 
payoff sum is negative. then the fecundity is zero. We refer 
to this translation as linear fitness. In any one time step, a 
random individual is chosen for reproduction proportional to 
its fecundity. The offspring. which is of the same type as the 
parent, is placed into an adjacent position on the graph (see 
Figure 3 and Figure 4 for an illustration). 

We are interested in the probability that a single A in-
dividual starting in a random position on the graph gener-
ous a lineage which will take over the entire population; this 
probability is generally called fixation probability. As before, 
there are two type; of questions. The 'qualitative question' is 
whether the fixation probability is positive. The 'quantitative 
question' is concerned with computing the fixation probability 
subject to a small error. We prove the following results. The 
qualitative question is NP-hard and in PSPACE. The quanti-
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OTC qUe86011 is #P-hard and in PSPACE. The results follow 
from SI Theorem 4, Theorem 8, and Theorem 15. 

Note that the first problem can also be obtained as a spe-
cial case of the second problem. In the payoff matrix (I) we 
can set, for example, a = -1, b = I, e = d = 0. This 'game' 
has the property that type 13 never reproduces and type A 
reproduces until half its neighbors are also of type A. This 
parameter choice leads to the same qualitative behavior and 
the same complexity bounds as described in the first. problem. 

A generalization of games on graphs is the setting where 
the interaction graph and the replacement graph are dis-
tinct (35). Thus each individual interacts with all of its neigh-
bors on the interaction graph to receive payoff. Subsequently 
an individual is chosen for reproduction proportional to its 
fecundity. The offspring is placed randomly among all neigh-
bors of the focal individual on the replacement graph. In this 
case, both the qualitative and quantitative questions become 
PSPACE-complete (SI Theorem 15) 

We also consider a variation of the second problem. In 
particular we change the mapping from payoff to fecundity. 
We now assume that fecundity is an exponential function of 
payoff, mid refer to it as exponential fitness (see Figure 4 for 
an illustration). Therefore the fecundity of an individual is 
always positive (even if its payoff sum is negative). In this 
setting the qualitative question can be decided in polynomial 
time. The reason is that the fixation probability is positive 
if the graph is connected. Thus, in order to answer the qual-
itative question the algorithm only needs to check whether 
the graph is connected; this problem is in P. However, the 
quantitative question has the same complexity as the previ-
ous problem (SI Theorem 16 and Theorem 17). 

A special case of games on graphs is constant selection. 
Type A has constant fecundity a and type 13 has constant 
fecundity b independent of any interactions. The qualitative 
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question concerning the fixation probability of A is 111 P. The 
quantitative question is in PSPACE, but any non-trivial lower 
ho 1 is an open question. 

In summary, we have established complexity results for 
some fundamental problem: in ecology and evolutionary 
games on graphs. In particular, we have solved the open prob-
lems mentioned in the survey (50. Open Problem 2.1 and 2.21. 
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Fig. 1. A pwlonal is  of the complexity (Lasses P. NP. #P. and PSPAPCE. The oomph...Ay clan P is contained in NP. NP a contained m #P. and #P it contained 
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#P-hardness and PSPACE-hardness. The intersection of NP and NP-hard gives die NP complete problems. and similarly for #P complete and PSPACE complete problems. 
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Q1: Probability >0? 
Q2: Approximate probability? 

Fig. 2. Illustratcn of mutant introduction. The residents (type A) an mind blue and the mutants (type B) alit colored red. The black edges are the edges of the 
otteracten graph and the red are the edges of the reproduction graph. The probability to introduce a mutant in a wok vertex is always one over the number of vertices. The 
computational questions of interest regarding the take aver prebability are as follows. whether the probability is positive (qualitative question). and compute an appectornabon 
of the probability (quantitative question). 
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o+b 

A B 

Fig. 3. Intonation d rrgeoduction with matrix d 
) 

The reden" (type A) are colored blue and the mutants (type B) we corned rod. The black edges at 

the edges d the interaction graph and the red me the edgers °, the NIXAMAtron Verb- In the Ng "jute betide each vino the payolf of the vertex (eekti is the sum of the 
payoff of the interactions) is shown. Since the lost figure shows the payoff computation. the imeraction edges that are responsible for payoff calculation are boldfaced. In the 
second figure the vertex labeled 3 rs selected for reproduction. The reproduction edges from vertex 3 are boldfaced, and each edge has probalklity 1/2 Finally, the successor 5 

chosen for replacement, i.e., voter 3 reproduces to verger S 
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Limiii him, 

Mutability 

Exponential hineta 

).Fig. 4. Illustration of different payoffs to fitness with Int 22 The residents (type A) are blue and the mutants (type 8) red. The black edges are the edges 

of the interaction graph and the red at the edges of the reproduction graph. In the figure of the tern row we show the payoff for every vertex. In the next rote we show the 
fitness Mich is either a linear function of the payoff but at least 0: or an exponential function of the payoff Fnally. in the third row. with each voter we show the probability. 

which is the normalize! Wass. that the vertex n selected for reproduction (in the last figure. tlw number x is the sum of thil Fitness. i t. x = e2 + 2e + 2ri +2e- i) 
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Table 1. Complexity results for various models and computational questions 

Qualitative Quantitative 
Ecological Scenario NP-complete #P-complete 
Linear fitness PSPACE-complete PSPACE-complete 
Exponential fitness P P$PACE-complete 

Footline Authot PNAS I Issue Date I Volume I Itsue Numbtr 1 9 

EFTA_R1_0 1954786 

EFTA02674317


