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Thare are deep, yot largely unezplored connections between com-
puter science and biology. Both disciplines examine how information
proliferates in time and space. Central results in computer sclence
describe the complexity of algorithms that solve certain classes of
problems. An algorithm is deemed efficient if it can solve a prablem
in polynomial time, which means the running time of the algorithm
is a polynomial function of the length of the input. There are classes
of harder problems for which the fastest possible algorithm requires
exponential time, Anather criterion is the space requirement of the
algorithm. There is a crucial distinction between algorithms that can
find a solution, werify a solution, or list several distinct solutions in
given time and space. The complexity hierarchy that is generated in
this way is the foundation of theoretical computer science, Precise
complexity results can be notoriously difficult. The famous P=NP
question is one of the hardest open problems in computer science
and all of mathematics. Here we consider simple processes of eco-
logical and evolutionary spatial dynamics, The basic question is:
what is the probability that a new invader (or a new mutant) takes
over a resident population? We derive precise complexity results for
a wvariety of scenarios. We therefore show that some fundamental
questions in this area cannot be answered by simple equations,

Significance

There s a deep connection Between computer science and bi-
alogy, as hoth fields study how information proliferates in tims
aned space. In computer science, the space and time reguire-
ments of algorithms to solve certain problems penerate com-
plexity classes, which represent the foundation of theoretical
computer science. The theory of evolution in structured pop-
wlation bas provided an impressive range of results, but an
understanding of the computational complexity of even sim-
ple questions = still missing, [n this work we prove — umex-
pectedly — that some fundamental problems in ecological and
evalutionary spatial dvnamics can be precisely characterized
hy well-established complexity classes of the theory of com-
putation, Sinee we show compiitational hardness [or several
hasic problems, onr results imply that the corresponding gues-
tions cannot be answered by simple equations. For example,
there cannot be a simple formula for the fixation probabil-
ity of a new mutant given frequency dependent selection in
a structkured population. We also show that some problems,
such as calculating the molecular clock of neutral evolution in
structured populations, admit efficient algornthmic solutions.
Evolutionary games on graphs | Fiation probabiity | Compleity classes

Evolution ocoars in populations of reproducing mdivida-
als. Mutation generates distinet types. Selection favors some
tyvpes over others, The mathematical formalism of evolution
deseribes how populations change in their genetic (or pheno-
typic) compaosition over time. Many papers study evolution-
ary dynamics in structured populations |] 205, 04,5, 6, 7, 8.
Spatial structure can affect the rate of neutral evolution [9).
There are results that deseribe which spatial stroctures do or
do not affect the cutcome of constant selection [10, 11, 12|,
Constant selection refers to a situation where the compet-
ing types have constant reproductive rates independent of
the composition of the population. Some population strue
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tures ean be amplilicrs or suppressors of constanl seles
tion [13, 6, 14] meaning that they modily the intensity of
selective dilferences. A large lerature deals with evolu-
tionary games [15. 16, 17. 18, 18] in stroctured populations
[1, 20, 21,22, 23, 24, 25, 26, 27, 28], In evolutionary games the
reproductive suceess of an individual depends on interactions
with others. Many population structures and update rules
can affect the owteome of evolutionary games. For example,
spatial structure can favor evolution of cooperation |1, 209],

In this paper we are interested in stochastic evolutionary
dynamics in populations of finite size. A typical setting is
provided by evolutionary graph theory [6, 30, 31, 32, 33, 34).
The individuals of a population oceupy the vertices of a graph,
The links determine who interacts with whom for receiving
payofl and for reproduction, There can be a single graph for
game dynamical interaction and evoluticnary replacement, or
the interaction amd replacement graphs can be distinet [335)].
Oten the graph is held constant during evolutionary updat-
img, but it is also possible to study dyvbamically changing
graphs [36, 37. 38, 39, 40, 41, 42, 43. 44).

The study of spatial dynamics also has a long tradition in
ecology [15, A6, 47, 48, 19]). Here the typical setting is that
different species compete for ecological niches, Many evolu-
tionary models are formally equivalent to ccological ones - es-
pecially if we consider only selection and not mutation. Then
we can imterpret the different tvpes as individuals of diferent
Apecies,

This paper is structured as follows. First we give an in-
tuitive account of the foundation of theoretical computer sci-
ence. We describe classes of problems that can be salved by al-
gorithms in certain tinee and space constraints, Subsequent lv
we present two simple problems of evolutionary dynamies i
apatial settings, The first problem iz motivated by a very
simple ecological dynamic: the second problem s the general
actting of evolutionary games on grapha, In both eases, the
basic guestion is to calculate the take over probability (or
fixation probability) of a new type, That iz we introduce a
new type inoa random position in the population and we ask
what is the complexity of an algovithm that ean characterize
the probability that the new type takes over the population
{I)IK'UHH'."\ l'i,:n;ﬂj,]. I:'Il.ll';\i,J'nnl:l.'11:|I|_':.I we are able Lo prove exact
complexity results (see Table 1),
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The class PTIME (denoted as P) oconsists of problems
whose solutions can be computed by an algorithm that nses
polynomial time. This means the running tie of the algo-
rithm grows as a polynomial function of the size of the input,
In computer science, PTIME represents the class of problems
which can be solved efficiently,

The class NF (non-deterministic polynomial time) con-
sists of problems, for which solutions exist that are of poly-
nomial length, and given s candidate for a solution of poly-
nomial length, whether the candidate is indeed a solution can
be checked in polynomial time. Therefore, an NI* algorithm
can verify a solution in polynomial time,

In order to proceed further, we need the notion of “redue-
tion' hetween classes of problems. A reduction. from a given
problem % to a problem Fa, is a translation such that a so-
lntion for Py can provide a solution for Py, More precisely,
if there is a polynomial-time reduction from P toe P, then a
polynomial-time algorithm for Py implies a polynomial-time
algorithm for 1.

A given problem is NP-hard if for every problem in NP
there is a polvonomial reduction to the given problem. A prob-
lem is NP-complete, if it is both NP-hard, as well as there is
an WP algorithm for the problem.

For example, consider a Boolean formula over variables,
and the question whether there exists an assignment to the
variables such that the formula is true. A polynomial candi-
date solition ks an assignment of truth values Lo variables, and
given a candidate assignment the formula can be evaluated in
polynomial time. This is the famons saiisliability, SAT, prob-
lemy in computer science. The SAT problem is NP-complete.

The class P s contalmed in NP, and a major, long-standing
upen gquestion in computer science is whether P=NPT A
polynemial-time algorithm for an NP-complete (or an NP-
hard) problem would imply that P=NP, resolving the long-
standing open probdem.

The class #P [sharpP) intuitively corresponds to count-
ing the number of solutions. A problem is in #P if it counts
the number of distinct solutions such that (i) every possible
candidate for a solution is of polynomial length, and (i) given
a candidate for a solution, it can be checked in polynomial
time whether the candidate is a solution. For example, given a
Boolean formmla, the problem whether there are at least & ois-
tinet satisfving assigninents Lo the formula is a #1P-problem.
A given problem is #P-hard, if for every #P-problem there
is a polynomial-time reduction to the given problem. A #P-
complete problem is a problem that is both #P-hard, and
there 15 a @ P-solution. For example, connting the number of
solutions in SAT is #P-complete.

The class NP 15 contained in &P becanse given the enu-
meration of solutions for #P, it is easy to check if there exists
wt least one seluticen. Intuitively, an NP problem asks whether
there ia at least one solution, whereas #F is the connting ver-
sion which asks if there are least £ distinet solutions (and the
special case of & = 1 gives NP). Again a major open question
is whether NP=#P7T Note that a polynomial-time algorithm
for a #P-complete problem would be an even higger resnlt as
it would imply both P=NP and P=4#.

The class PSPACE consista of problems which can be
solved with polvnomial space. Note that a polynomial space
algorithm can reuse space and can in general require exponen-
tial time. Ewvery #P problem can be solved in PSPACE by
aimply enumerating each candidate for a solution and check-
ing if it is a solution. Since we can reuse space to cnumerate
the candidates for solutions, the enumeration can be achioved
in polynomial space.  Moreover, every polvoomial-time al-
gorithm uses at most polvnomial space. Henee it follows
that #F is contained in PSPACE. The notion of PSPACE-
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hardness and PSPACE-completeness is similar to the notion
of NP-hardness and NP-completeness, but with respect to the
problems in PSPACE. Again a long-standing open question in
computer seienee is whether #P=FSPACE, and a polynomial-
time algorithm for a PSPACE-complete (or PSPACE-hard)
problem would imply P=NP=4#P=PSPACL.

We have mentioned that the major gquestions about the
equality of the complexity classes are open problems, but the
widely believed conjecture is that P ois strictly contained in
NP, NP is strictly contained in #P, and #P is strictly con-
tained in PSPACE. In other words. it is widely belioved that
NP-complete problems cannot he solved in polynomial time,
#P-complete problems are harder than NP-complete prob-
lems, and PSPACE-complete problems are harder than #P-
complete problems. A pictorial illustration of the complesxity
classes is shown in Figure 1.

The first problem s motivated by ecological dynamics,
There is an ccosystem occupicd by resident species. The spa-
tial structure of the ecosystem is given by a graph, An in-
vauling specics is introduced (see Figure 2 for an illustration).
We assume the invading species has a competitive advantage
in the sense that onee & position is occupied by the invading
species the mesident cannot get it back. The invading species,
however, has a density constraint: if the number of invaders
around a focal invader is above a threshold, B, then the in-
vader in the focal node can not colonize another node.

We are interested in Lhe probability that the invader start-
ing from a random initial position will take over the entire
eccosystem (and therefore drive the resident to extinetion).
There are two types of guestions. The ‘qualitative question’
i whether the take over probabilivy is greater than zero. The
‘quantitative question’ is concerned with computing the take
over probability subject to o small error, Figure 2 gives a pie-
torial illustration. We prove the following resnlts. The guali-
tative gquestion is NP-complete (51 Theorem 4), The gquanti-
tive question is #P-complete {51 Theorem 8).

The second problem is concerned with evolutionary games
in structured populations.  There are two types, A and 8,
whose reproductive rates depend on local interactions. We
consider the setting of games on graphs. Fach vertex is ocen-
picsd by one individual, which is either 4 or B, Interactions
oeenr pairwise with all neighbors. The pavoll matrix is given
by

A B

Afa b
H(w r.!) ()

The entries of the pavoll matrix can be positive or negative
{or zero). Each individual interacts with all of its neighbors
it the graph to devive a payoll sum, The payoll sum is trans
latexdd into reproductive success as follows. IF the payvoff sum
is prsitive, then the ferundity equals the payoff sum. 1T the
pavoll sum is negative, then the fecundity is zera. We refer
to this translation as linear fitness. In any one time step, a
random individual is chosen for reprodoction proportional to
its fecundity. The offspring. which is of the same type as the
parent, s placed into an adjacent position on the graph (see
Figure 3 and Figure 4 for an illustration).

We are interested in the probability that a single A in-
dividual starting in a vandom position on the graph gener-
ates a lineage which will take over the entire population: this
probability is generally called fixation probability, As hefore,
there are two types of questions. The ‘qualitative question’ is
whether the fixation probability is positive. The “quantitative
uestion” s concerned with computing the fixation prolwbility
subject to a small error. We prove the following results. The
gualitative question is NP-hard and in PSPACE. The quanti-
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tive guestion is #P-hard and in PSPACE. The results follow
from 51 Theorem 4, Theorem 8, and Theorem 15,

Mote that the first problem can also be obtained as a spe-
cial case of the second problem. In the payvoff matrvix (1) we
can set, for example, o = <1, = 1. ¢ = d = (1. This "game’
has the property that tvpe B never reproduces and tvpe A
reprocuces until kalf its neighbors are also of type A, This
parameter choice leads to the same gualitative behavior and
the same complexity bounds as desieribed in the first problem.

A peneralization of games on graphs is the setting where
the interaction graph and the replacement graph are dis-
tinet [35]), Thus each individual interacts with all of its neigh-
bors on the interaction graph to receive pavolf. Subsequently
an individual is chosen for reproduction proportional to its
fecundity. The offspring = placed randomly among all neigh-
hora of the focal individual on the replacement graph. In this
case, both the qualitative and quantitative questions become
PSPACE-complete (51 Theorem 15)

We also consider a variation of the second problem. In
particular we change the mapping from payoff 1o fecundiiy,
We now assume that fecundity s an exponential function of
payofl, and refer to it as exponential fitness (see Figure 4 for
an illustration). Therefore the fecundity of an individuaal is
alwava positive (even if ita payofl sum is negative), In this
setting the qualitative question can be decided in polynomial
time. The reason i3 that the fixation probability is positive
if the graph is connected. Thus, in order to answer the qual-
itative question the algorithm only needs to check whether
the graph is connected; this problem is in P However, the
quantitative question has the same complexity as the provi-
ons problem (51 Theorem 16 and Theorem 17).

A special case of games on graphs is constant selection,
Type A has constant feeundity @ and type & has constant
[ecundity b independent of any interactions. The gualitative
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guestion concerning the fixation probability of A &= in P. The
guantitative guestion is in PSPACE, but any non-trivial lower
boumd is an open guestion.

In summary, we have established complexity results for
sorne umdamental problems in ecology and  evolutionary
games on graphs, In particular, we have solved the open prob-
lemns mentioned in the survey (50, Open Problem 2.1 and 2.2).
Cur main results are summarized in Table 1. The most in-
teresting aspects of our results are the lower bounds, which
shows that in most cases there exists no eflicient algorithm,
under the widely believed conjecture that P s different from
NP, A simple equation based solution would give an efficient
algorithm, and thus our result shows that for evaluating the
fixation probability in spatial settings there does not exist a
simple equation based solution in general,

Finally, while wi establish computational hardness for sev-
eral problems, we also show that two classic problems can be
solved in polynomial time (51 Section 7). First, we consider
the molecular clock, which is the rate at which neutral mota-
tions accummlate over time, The molecular clock is affected
by population structure [33]. We show that the molecular
clock can be computed in polyoomial time becanse the fprods-
lem reduces to solving a set of linear equalities, which can be
achieved in polynomial time using Gaussian elimination, Sec-
ond, we consider evolutionary games in a well-mixed popula-
tion structure, where the underlving structure is the complete
graph |51]. We show that the exact fixation probability can
b computed in polynomial time, In this case the problem can
be reduced to computing absorption probabilities in Markow
chains, where each state represent the number of mutants,
Henee the Markov chain is linear in the number of vertices
of the graphs, and sinee absorplion probabilities in Markov
chains can be computed in polvnomial time (by solving a set
of lincar equalities] we obiain the desired resull.
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Fig. 1. A picterial iBustration of the complexity classes P, NP, #P_ and PSPAPCE, The complexity class P is contaired in NP, NP & cantained in #P. and #P is contained
w PSPACE. The widely believed comjectine & that the comglexity classes are differant. A peoblem s NP-hard of it s at least as hard as each prablem in NIP; and semelar for
#P-hardness and PSPACE hardness. The interssction of NP and NF-hard gives the NF-complete problems, and similarly for #£8F - complete and PSPACE-complete prablems.
Hence a palynomial-time solutsan for 3 NP-haed or NF-complete problem would mply P=NP
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1: Probability =07
Q2 Approximate probability?

Fiu,. 2. llusteation of mutant intreduction. The msidents (type A) are colored blug and the mutants (type B) are colored md, The black edges are the edges of the
mteraction gragh ard the red are the edges of the reproduction graph. The prabability te introdisce 8 mutant in o specile verter is shvays one over the number of vertices. The
computational questions of intersst regarding the take over probability are 2 fallows: whether the probability is positive I:quallt:ltlw nue:‘mn:l. and compute an approsimatan
of the probability [guantitative questicn ).
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A B

. A [
FIE. 3. llustration of reproduction with matnis B ( : r; ) The ressdents {type A) are colorsd blee and the mutanis (type B) are colored red. The black edges ane

the edges of the interaction graph and the red are the edges of the repracluction graph, In the first figere beside sach wertex the payell of the wertes [which is the sum of the
payall of the interactions] is shewsn. Since the first figure shows the pavoll computation. the interaction edges that are respansible lor payall calculation are baldfaced. In the
second ligure the verlex labeled 3 s selected for reproduction. The reproduction edges from wertéx 3 are boldfaced, and each edge has probabality 1/2 Finally, the succeiser 5
s chosen for replacement, ie., wertes 3 reproduces o vertex §
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Papalf

Limear fitness Exponential fitness

Fitauss

Frabahiling

A B
-1 2
1 ¥}
of the imteraction graph and the red are the =dges of the reproduction graph. In the figure of the first row we show the payoff for every vertex. In the next row we show the
fitreess whach is either & lnear function of the payall but at least O; o an exponential function of the payoff. Finally, in the third row, wath sach vertes we show the probability,

which is the normalized fitness, that the vartes & sebected for regraduction [in the Lt figare, the numbaer o is the sism of the Ftnass, is, T = 4~:2 + Uy 4 '21-* + v !r:l

Fig. 4. llustravion of different payolils to fitness with ;;, ( ) The residents {type A) are blue and the mutants (type B) red. The black edges are the edges
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Table 1. Complexity results for various models and computational gquestions

Qualitative Quantitative
Ecological Scenario NP-complate #P-complete
Linear fitness PSPACE-complete PSPACE-complete
Exponential fitness P PSPACE-complete
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