
J. Phys. I Flaace MARCH 1997, PAGE 431 

Convergent Multiplicative Processes Repelled from Zero: 
Power Laws and libuncated Power Laws 

Didier Sornette (I,2,') and Raina Cola (I) 

(I ) Laboratoire de Physique de la Matière Condensée ("), Université des Sciences, BP 70, 
Parc Valrose, 06108 Nice Cedex 2, France 

Department of Earth and Space Science. and Institute of Geophysics and Planetary Physics, 
University of California, Lin Angeles, California 90095, USA 

(Received 2 September 1996, received in final tom 12 November 1996. accepted 20 November 
1996) 

PACS.05.40.+j - Fluctuation phenomena, random processes, and Brownian motion 
PACS.64.60.Ht - Dynamic critical phenomena 
PACS.05.70.Ln - Nonequilibriuin thermodynamics, irreversible processes 

Abstract. — Levy and Solomon have found that random multiplicative processes we = 
(with At > lead, in the presence of a boundary constraint, to a distribution P(tur) in the form 
of a power law wifte" ). We provide a simple exact physically intuitive derivation of this result 
based on a random walk analogy and show the following: 1) the result applies to the asymptotic 
(t —› distribution of we and should be distinguished from the central limit theorem which 
is a statement on the asymptotic distribution of the reduced variable *(log we — (log tve)); 2) 
the two necessary and sufficient conditions for P(we) to be a power law are that (log ;) < 0 
(corresponding to a drift w, —e 0) and that w, not be allowed to become too small. We discuss 
several models, previously thought unrelated, showing the commun underlying mechanism for 
the generation of power laws by multiplicative processes: the variable log we undergoes a random 
walk repelled from —oo, which we describe by a Fokker-Planck equatiou. 3) For all these models, 
we obtain the exact result that p is solution of (A.) = 1 and thus depends on the distribution of 
A. 4) For finite t, the power law is cut-off by a log-normal tail, reflecting the fact that the random 
walk has not the time to scatter off the repulsive force to diffusively transport the information 
far in the tail. 

Résumé. — Levy et Solomon ont montré qu'un processus multiplicatif du type we = #1,2...; 
(avec ; > 0) conduit, eu présence d'une contrainte de bord, à une distribution P(we) eu loi de 
puissance wr c "1""). Nous proposons une dérivation simple, intuitive et exacte de ce résultat basée 
sur une analogie avec une marche aléatoire. Nous obtenons les résultats suivants: 1) le régime de 
lui de puissance décrit la distribution asymptotique de we aux grands temps et doit être distingué 
du théorème limite central décrivant la convergence de la variable réduite *(log tue — (log eue)) 
vers la loi Gaussienue; 2) les deux conditions nécessaires et suffisantes pour que P(we) soit une 
loi de puissance sont (log A,) < 0 (correspondant à une dérive vers zéro) et la contrainte que we 
soit empêchée de trop s'approcher de zéro. Cette contrainte peut être mise eu oeuvre de manière 
variée, généralisant à une grande classe de modèles le cas d'une barrière réfléchissante examiné 
par Levy et Solomon. Nous donnons aussi un traitement approximatif, devenant exact dans 
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la Incite o0 la distribution de A est etroite ou log-normale eu teruie d'equatiou de Fokker-
Planck. 3) Pour tons ms modeles, nous obtenons le resultat general exact que l'exposant p est 
la solution de ('equation (A") a 1. p est done non-universel et depend de la specificite de la 
distribution de A. 4) Pour des t finis, la loi de puissance est tronquee par one queue log-uorwale 
due a une exploration finie de la marche aleatoire. 

1. Introduction 

Many mechanisms can lead to power law distributions. Power laws have a special status due to 
the absence of a characteristic scale and the implicit (to the physicist) relationship with critical 
phenomena, a subtle many-body problem in which self-similarity and power laws emerge from 
cooperative effects leading to non-analytic behavior of the partition or characteristic function. 

Recently, Levy and Solomon [1) have presented a novel mechanism based on random multi-
plicative processes: 

we+1 = Anon (1) 

where Ae is a stochastic variable with probability distribution fl(A,) and we express we in units 
of a reference value wu which could be of the form en, with r constant. All our analysis below 
then describes the distribution of we normalized to wu, in other words in the "reference frame" 
moving with wu. At the end, we can easily make reappear the scale wu by replacing everywhere 
w by iv/wee. 

Taken literally with no other ingredient, expression (1) leads to the log-normal distribution 
[2-41. Indeed, taking the logarithm of (1), we can express the distribution of loges as the 
convolution of t distributions of log A. Using the cumulant expansion and going back to the 
variable wt leads, for large times t, to 

Nwt) =  exp [— 
2Dt 

wt — vt)21, 
2Int tve 

(2) 

where v = (log A) = fo°°dA log AII(A) and D = ((logA)2) — (logA)2. Expression (2) can be 
rewritten 

P(wt) vg---rm tvrotvit eu(wdvi (3) 

with 
1 IV 

140 2Dt = log ert
• (4) 

(

Since '(ive) is a slowly varying function of wt, this form shows that the log-normal distribution 
can be mistaken for au apparent power law with an exponent p slowly varying with the range 
wt which is measured. Indeed, it was pointed out [51 that for we 4K e(v+2D)t, #(10) 0 1 and 
the log-normal is undistinguishable from the 1/wt distribution, providing a mechanism for 1/f 
noise. However, notice that µ(wt) oo far in the tail we > e("4-2O" and the log-normal 
distribution is not a power law. 

The ingredient added by Levy and Solomon 111 is to constrain we to remain larger than a 
minimum value coo > O. This corresponds to put back we to we as soon as it would become 
smaller. To understand intuitively what happens, it is simpler to think in terms of the variables 
r t = logics and I = log A, here following [1]. Then obviously, the equation (1) defines a 
random walk in z-space with steps 1 (positive and negative) distributed according to the density 
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Fig. 1. — Steady-state exponential profile of the probability density of presence of the random walk 
with a negative drift and a reflecting barrier. 

distribution 7r(/) = elf1(0). The distribution of the position of the random walk is similarly 
defined: P(xt, t) = er,P(er,,t). 

• If v -a (1) = (log > 0, the random walk is biased and drifts to +oo. As a consequence, the 
presence of the barrier has no important consequence and we recover the log-normal distribution 
(2) apart from minor and less and less important boundary effects at x0 = log wo, as t increases. 
Thus, this regime is without surprise and does not lead to any power law. We can however 
transform this case in the following one v a (I) < 0 with a suitable definition of the moving 
reference scale too — en such that, in this frame, the random random drifts to the left. But 
the barrier has to stay fixed in the moving frame, corresponding to a moving barrier in the 
unsealed variable wt. 

• If v .a (1) < 0, the random walk drifts towards the barrier. The qualitative picture is the 
following (see Figs. 1 and 2): a steady-state (t oo) establishes itself in which the net drift 
to the left is balanced by the reflection on the reflecting barrier. The random walk becomes 
trapped in au effective cavity of size of order D/v with an exponential tail (see below). Its 
incessant motion back and forth and repeated reflections off the barrier and diffusion away 
from it lead to the build-up of an exponential probability (concentration) profile (and no more 
a Gaussian). The probability density function of the walker position x is then of the form e - s 
with µ ss IvI/D. As x is the logarithm of the random variable w, then one obtains a power law 
distribution for w of the form w-(1+0). 

We first present au intuitive approximate derivation of the power law distribution and its 
exponent, using the Fokker-Planck formulation in a random walk analogy. In Section 2.2, the 
problem is formulated rigorously and solved exactly in Section 2.5. Sections 2.3 and 2.4 are 
generalization of the process (1). The explicit calculation of the exponent of the power law 
distribution is done using a Wiener-Hopf integral equation, showing that it is controlled by 
extreme values of the process. 

EFTA_R1_0 1992865 
EFTA02681574



13; JOURNAL DE PHYSIQUE I 

t Reflecting 
barrier 

-01 

drift 

0 

a) 

No DIM 

0.485 e(t) < 1.48 and 0 c b(t) < 1 

N°3 

200 00 t  600 800 1000 
X 

b) 

Fig. 2. — a) A typical trajectory of the random walker at large times showing the multiple reflections 
off the barrier. b) The time evolution of the Kesten variable defined by the equation (19) with at 
uniformly taken in the interval [0.48; 1.48) leading to p -.4.1 1.47 according to (17) and be uniformly 
taken in the interval [0; II. Notice the intermittent large excursions. 

2. The Random Walk Analogy 

In the x1 = log tut and i f = log At variables, expression (1) reads 

Xf+1 = Xi + (5) 

and describes a random walk with a drift (I) < 0 to the left. The barrier at xu = log too 
ensures that the random walk does not escape to This process is described by the Master 
equation (1] 

+cad 

P(x, t + 1) = J tr(1)P(x —1, OW. (6) 

2.1. PE/CIURBATIVE ANALYSIS. — To get a physical intuition of the underlying mechanism, 
we now approximate this exact Master equation by its corresponding Fokker-Planck equation. 
Usually, the Fokker-Planck equation becomes exact in the limit where the variance of x(1) and 
the time interval between two steps go to zero while keeping a constant finite ratio defining the 
diffusion coefficient M. In our case, this corresponds to taking the limit of very narrow n(I) 
distributions. In this case, we can expand 12(x — I, t) up to second order 

, ,0 2P 
P(x —1,0 = P(x,0 — 6 -OP Rx 0 + -6 2 - h 2 0x2 a)Ox 

leading to the Fokker-Planck formulation 

OP(x,t) 0j(x,t) 
— v

0P(x,t) 
+ D

O2P(x,t) 
7) Ot Ox Os ox2 

where v = (1) and D = (12) - (1)2 are the leading cuinulants of Il(log A). j(x,t) is the flux 
defined by 

Dj(x,t)= vP(x, t)  • (8) Ox, t) x 
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Expression (7) is nothing but the conservation of probability. It can be shown that this 
description (7) is generic in the limit of very narrow 7f distributions: the details of r are 
not important for the large t behavior; only its first two cumulants control the results [61. 
v and D introduce a characteristic "length" a = In the overdamped approxima-
tion, we can neglect the inertia of the random walker, and the general Langevin equation 
ra = + F Feet' reduces to 

c lit

dx 
= v " (t)' at (9) 

which is equivalent to the Fokker-Planck equation (7). n is a noise of zero mean and delta 
correlation with variance D. This form exemplifies the competition between drift v = —11,1 and 
diffusion n(t). 

The stationary solution of (7), 19.7t$ - 0, is immediately found to be 

with 

P00(x) = A - —
B

en, 
µ 

Iv[ 
µ— 

A and are two constants of integration. Notice that, as expected in this approximation 
scheme, µ is the inverse of the characteristic length a% In absence of the barrier, the solution 
is obviously A = 13 = 0 leading to the trivial solution P°°(x) = 0, which is indeed the limit of 
the log-normal form (2) when t oo. In the prtzemat of the barrier, there are two equivalent 
ways to deal with it. The most obvious one is to impose normalization 

fSa° Pea(x)dx = 1, (12) 
s 

where xe a log we. This leads to 

Poo(x) = (13) 

Alternatively, we can express the condition that the barrier at xe is reflective, namely that 
the flux j(x0) = 0. Let us stress that the correct boundary condition is indeed of this type 
(and not absorbing for instance) as the rule of the multiplicative process is that we put back 
wt to we when it becomes smaller than we, thus ensuring tut ≥ w0. An absorbing boundary 
condition would correspond to kill the process when tut < we. Substituting (10) in (8) with 
j(x0) = 0, we retrieve (13) which is automatically normalized. Reciprocally, (13) obtained 
front (12) satisfies the condition j(x0) = D. 

There is a faster way to get this result (13) using an analogy with a Brownian motion in 
equilibrium with a thermal bath. The bias (I) < 0 corresponds to the existence of a constant 
force —H in the —x direction. This force derives from the linearly increasing potential V = 
In thermodynamic equilibrium, a Brownian particle is found at the position x with probability 
given by the Boltzmann factor e- slyl". This is exactly (13) with D = ihri as it should from 
the definition of the random noise modelling the thermal fluctuations. 

Translating in the initial variable tat = 9, we get the Paretian distribution 

P3o(tve) — l÷p 

We 

(14) 
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with µ given by (11): 

µ 
_  l(log A) I 
— (15) 

410/3 A)2) 
(log

A)2

These two derivations should not give the impression that we have found the exact solution. 
As we show below, it turns out that the exponential form is correct but the value of p given 
by (15) is only an approximation. As already stressed, the Fokker-Planck is valid in the limit 
of narrow distributions of step lengths. The Boltzmann analogy assumes thermal equilibrium, 
i.e. that the noise is distributed according to a Gaussian distribution, corresponding to a 
log-normal distribution for the A's. These restrictive hypothesis are not obeyed in general for 
arbitrary II(A). The power law distribution (14) is sensitive to large deviations not captured 
within the Fokker-Planck approximation. 

2.2. EXACT ANALYSIS. — In the general case where these approximations do not hold, we 
have to address the general problem defined by the equations (5, 6). Let us consider first the 
case where the barrier is absent. As already stated, the random walk eventually escapes to 
—oo with probability one. However, it will wander around its initial starting point, exploring 
maybe to the right and left sides for a while before escaping to —oo. For a given realization, 
we can thus measure the rightmost position xmar it ever reached over all times. What is 
the distribution P,,,„,„(Max(0,:ven.,))? The question has been answered iu the mathematical 
literature using renewal theory ( [71, p. 402) and the answer is 

Pliisa((Max(0, •••• e- Pzinx, (16) 

with µ given by +0. 
L. w(l)cold/ = f II(A)AmdA = 1. (17) 

1) 

The proof can be sketched in a few lines (7) and we summarize it because it will be useful 
in the sequel. Consider the probability distribution function M(x) a f',,P,.(x.)dx., 
that x,Mm ≤ x. Starting at the origin, this event ≤ x occurs if the first step of the random 
walk verific x1 = y ≤ x together with the condition that the rightmost position of the random 
walk starting from -Si is less or equal to x - y. Summing over all possible y, we get the 
Wiener-Hopf integral equation 

M(x) = I r M(x - y)x(y)dy. (18) 

It is straightforward to check that .84(x) -> e- Pr for large x with µ given by (17). We refer 
to 17] for the questions of uniqueness and to [9,10] for classical methods for handling Wiener-
Ilopf integral equations. We shall encounter the same type of Wiener-Hopf integral equation 
in Section 2.5 below which addresses the general case 

How is this result useful for our problem? Intuitively, the presence of the barrier, which 
prevents the escape of the random walk, amounts to reinjecting the random walker and enabling 
it to sample again and again the large positive deviations described by the distribution (16). 
Indeed, for such a large deviation, the presence of the barrier is not felt and the presence of 
the drift ensures the validity of (16) for large x. These intuitive arguments are shown to be 
exact in Section 2.5 for a broad class of processes. 

Let us briefly mention that there is another way to use this problem, on the rightmost 
position ever reached, to get an exponential distribution and therefore a power law dis-
tribution in the wt variable. Suppose that we have a constant input of random walkers, say at 
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the origin. They establish a uniform flux directed towards —oo. The density (number per unit 
length) of these walkers to the right is obviously decaying as given by (16) with (17). This 
provides an alternative mechanism for generating power laws, based on the superposition of 
many convergent multiplicative processes. 

Let us now compare the two results (15, 17) for µ. It is straightforward to check that (15) 
is the solution of (17) when x(l) is a Gaussian i.e. II(A) is a log-normal distribution. (15) can 
also be obtained perturbatively from (17): expanding e"t as es = 1+ µl + ep212 + ... up to 
second order and re-exponentiating, we find that the solution of (17) is (15). This was expected 
from our previous discussion of the approximation involved in the use of the Fokker-Planck 
equation. 

2.3. RELATION WITH KESTEN VARIABLES. — Consider the following mixture of multiplicative 
and additive process defining a random affine map: 

St+1 = bt + AtSt, (19) 

with A and 6 being positive independent random variables. The stochastic dynamical process 
(19) has been introduced in various occasions, for instance in the physical modelling of 1D 
disordered systems [11] and the statistical representation of financial time series [12]. The 
variable .9(1) is known in probability theory as a Kesten variable [14 

Consider as an example the number of fish St in a lake in the i-th year. The population St+ 
in the (t + 1)st year is related to the population St through (19). The growth rate At depends 
on the rate of reproduction and the depletion rate due to fishing as well as environmental 
conditions, and is therefore a variable quantity. The quantity tit describes the input due to 
restocking from an external source such as a fish hatchery in artificial cases, or from migration 
from adjoining reservoirs in natural cases. This model (19) can be applied to the problems of 
population dynamics, epidemics, investment portfolio growth, and immigration across national 
borders [8]. The justification of our interest in (19) relies on the fact that it is the simplest 
linear stochastic equation that can provide an alternative modelling strategy for describing 
complex time series to the nonlinear deterministic maps. Notice that the multiplicative process, 
with a At that can take values larger than 1, ensures au intermittent sensitive dependence on 
initial conditions. The restocking term tit, or more generally the repulsion from the origin, 
corresponds to a reinjection of the dynamical. It is noteworthy that these two ingredients, 
of sensitive dependence on initial conditions and reinjection, are also the two fundamental 
properties of systems exhibiting chaotic behavior. 

6 = 0 recovers (1) (without the barrier). For 6 # 0, it is well-known that for (log A) < 0, 
S(t) is distributed according to a power law 

(20) 

with p determined by the condition (17) [13J already encountered above (Al = 1. In fact, the 
derivation of (20) with (17) uses the result (16) of the renewal theory of large positive excursions 
of a random walk biased towards —oo [12]. Figure 3 shows the reconstructed probability density 
of the Kesten variable .5, for At and fit uniformly sampled in the interval [0.48; 1.48] and in 10, 1] 
respectively. This corresponds to the theoretical value µ a 1.47. We have also constructed 
the probability density function of the variations St — St of the Kesten variable for the saute 
values. We observe again a power law tail for the positive and negative variations, with the 
same exponent. 

This is not by chance and we now show that the multiplicative process with the reflective 
barrier and the Kesten variable are deeply related. First, notice that for (log A) < 0 in absence 
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Fig. 3. — Reconstructed natural logarithm of the probability density of the Kesten variable St as 
a function of the logarithm of St, fur 0.48 ≤ At ≤ 1.48 and 0 ≤ be ≤ 1, uniformly sampled. The 
theoretical prediction µ rb 1.47 from (17) is quantitatively verified. 

of b(t), S, would shrink to zero. The term b(t) can be thought of as an effective repulsion from 
zero and thus acts similarly to the previous barrier wo. To see this more quantitatively, we 
form 

St+i - St bt + At - 1. 
St St

(21) 

We make the approximation of writing the finite difference S, 
t-t -5. as dt s It has the same 

status as the one used to derive the Fokker-Planck equation and will lead to results correct up 
to the second cumulant. Introducing again the variable x = log S, expression (21) gives the 
overdamped Langevin equation: 

dx 
at = b(t)e-x - Iv' + u(t), (22) 

where we have written A(t) -1 as the sum of its mean and a purely fluctuating part. We thus 
get v = (A) -1 •a• (log A) and D (q2) = (A2) - (A)2 = (log(A)2) - (108 A)2. Compared to (9), 
we see the additional term b(t)e- r, corresponding to a repulsion from the x < 0 region. This 
repulsion replaces the reflective barrier, which can itself in turn be modelled by a concentrated 
force. The corresponding Fokker-Planck equation is 

8P(x,t) „ , 
(v 

, ,  r, OP(x, t) n O2P(x,t) 
- ;MN-- 1-12,t) -  + owe-- )- + V . (23) at Ox oz2 
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It also presents a well-defined stationary solution that we can easily obtain iu the regions 
x —) +oo and x —oo. In the first case. the terms b(t)e'r can be neglected and we rawer 
the previous results (13) with xo now determined from asymptotic matching with the solution 
at x —t —co. For r —1. —oo, we can drop all the terms except those in factor of the exponentials 
which diverge and get P(x) —) et. Back in the tat variable, Pag,50 is a constant for Se —> 0 
and decays algebraically as given by (14) with the exponent (11, 15) for Si +oo. Beyond 
these approximations, we can solve exactly expression (21) or equivalently (19) and we recover 
(17). This is presented in Section 2.5 below. Again, notice that (11, 15) is equal to the solution 
of (17) up to second order in the cumulant expansion of the distribution of log A. 

It is interesting to note that the Kesten process (19) is a generalization of branching processes 
[14]. Consider the simplest example of a branching process in which a branch can either die 
with probability pu or give two branches with probability pi = 1 —po. Suppose in addition that, 
at each time step, a new branch nucleates. Then, the number of branches S2+2 at generation 
t + 1 is given by equation (19) with bt = 1 and At = ve., where /2+2 is the number of 
branches out of the Se which give two branches. The distribution II(A) is simply deduced from 
the binomial distribution of j2+2, namely (::)ptirp:' = Isa _bits:ifl ript+14 1-jn. For 

large St, I1(A) is approximately a Gaussian with a standard deviation equal to Is y ts- i.e. it 
goes to zero for large St. We thus pinpoint here the key difference between standard branching 
processes and the Kesteu model: in branching models, large generations are self-averaging in 
the sense that the number of children at a given generation fluctuates less and less as the size 
of the generation increases, in contrast to equation (19) exhibiting the same relative fluctuation 
amplitude. This is the fundamental reason for the robustness of the existence of a power law 
distribution in contrast to branching models in which a power law is found only for the special 
critical case po = p,2 (for po > p2, the population dies off, while for pu < p2 the population 
prolifates exponentially). The same conclusion carries out directly for more general branching 
models. Note finally that it can be shown that the branching model previously defined becomes 
equivalent to a Kesten process if the number of branches formed from a single one is itself a 
random variable distributed according to a power law with the special exponent p = 1, ensuring 
the scaling of the fluctuations with the size of the generations. 

2.4. GENERALIZATION '1'0 A BROAD CLASS OF NIULTIPLICAFIVE PROCESS WITH REPULSION 
NT THE ORIGIN. — The above considerations lead us to propose the following generalization 

11.4+1 eitutt.ixt.6•••••BAitet,

where /(we, {Al, 82, ...})) 0 for wt —f co and f (w2 , (A2, be,...))) —) oo for wt -10. 

The model (1) is the special case f (wt, {At, tit , ...}) = 0 for we > wo and f (wt, {At , ...}) = 
log( f- ) ) for tot ≤ wo. The Kesten model (19) is the special case f(w2, b., ...}) = log(1 + 

a). More generally, we can consider a process in which at each time step t, after the variable W.
At is generated, the new value Arwe (or A2 tat + lit in the case of Kesten variables) is readjusted 
by a factor enwt,02-6.-..-1) reflecting the constraints imposed on the dynamical process. It is 
thus reasonable to consider the case where f (wt , {At , 6,, ...}) depends on t only through the 
dynamical variables At (and in special cases 6t ), a condition which already holds for the two 
examples above. In the following Fokker-Planck approximation, we shall consider the case 
where f(tvti {As, be, •••}) is actually a function of the product AtIlli, which is the value generated 
by the process at step t and to which the constraint represented by f (kw° is applied. We 
shall turn back to the general case (24) in Section 2.5. 

In the Fokker-Planck approximation, f (Atm) defines an effective repulsive stochastic force. 
To illustrate the repulsive mechanism, it is enough to consider the restricted case where f (wt) 

(24) 
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Fig. 4. — Generic form of the potential whose gradient gives the force felt by the random walker. 
This leads to a steady-state exponential profile of its density probability, corresponding to a power law 
distribution of the we-variable. 

is only a function of we. This corresponds to freezing the random part in the noise term Ae 
leading to the definition of the diffusion coefficient. In the random walk analogy, we thus 
have the force F(re) = f(tw) acting on the random walker. The cormponding Fokker-Planck 
equation is 

OP(x,t) 0(v + F(x))P(x, t) D 02P(x,t) 
0t Ox axe • 

(25) 

F(x) decays to zero at x —1 oo and establishes a repulsion of the diffusive process in the negative 
x region: this is the translation in the random walk analogy of the condition f (wt) —1 co for 
we 0. 

With these properties, the tail of P(x) for large z and large timers is given by Px,(x) e- oz, 
and as a consequence we is distributed according to a power law, with exponent p given again 
approximately by (11, 15). The shape of the potential defined by v+ F(x) — ;IP, showing 
the fundamental mechanism, is depicted in Figure 4. As we have already noted, the bound 
tot, leading to a reflecting barrier is a special case of this general situation, corresponding to a 
concentrated repulsive force at re. 

The expression (24) for the general model can be "derived" from the overdamped Langevin 
equation equivalent to the Fokker-Planck equation (25): 

dx 
= 1(x) — Iv' + n(t). (26) 

alt 

Let us take the discrete version of (26) as r e.F i = xt +F(re)— Ivi + ifs, replace with r e = log we
and expouentiate to obtain 

wi+i = e(los wilAtwt, (27) 

where Ae . Since F(x) —t 0 for large we, we recover a pure multiplicative model 
wt+1 = Atwe for the tail. The condition that F(x) becomes very large for negative x ensures 
that we cannot decrease to zero as it gets multiplied by a diverging number when it goes to 
zero. 

2.5. EXACT DERIVATION OF THE TAIL OF THE POWER LAW DISTRIBUTION. — The existence 
of a limiting distribution for we obeying (24), for a large class of f(w, {A,b, ...}) decaying to 
zero for large to and going to infinity for w 0, is ensured by the competition between 
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the convergence of w to zero and the sharp repulsion from it. We shall also suppose in what 
follows that Of (w, (A, 6, 0 for w oo, which is satisfied for a large class of smooth 
functions already satisfying the above conditions. It is an interesting mathematical problem 
to establish this result rigorously, for instance by the method used in [1,10]. Assuming the 
existence of the asymptotic distribution P(w), we can determine its shape, which must obey 

v = w e- f(w•I A.6- .)) 121 Aw, (28) 

where (A, 6, ...) represents the set of stochastic variables used to define the random process. 
The expression (28) means that the l.h.s. and r.h.s. have the same distribution. We can thus 
write too n t. dA 

P°(v) = J +op dA fl(A) j . dw P,,,(w)6(o — Aw) = / —11(A)P(i)• 
o o o A A 

Introducing V = logy, z a log w and I a log A, we get 

P(V) = f d111(I)P,(V — l). (29) 

Taking the logarithm of (28), we have V = z — f (x, {A,6,...)), showing that V x for 
large x > 0, since we have assumed that fix, IAA ...)) 0 for large z. We can write 
P(V)dV = Pi(x)dx leading to P(V) = s_ 0 frz T AT)4)10, P1(V) for x —/ oo. We thus 
recover the Wiener-Hopi integral equation (18) yielding the announced results (16) with (17) 
and therefore the power law distribution (14) for we with p given by (17). 

This derivation explains the origin of the generality of these results to a large class of con-
vergent multiplicative processes repelled from the origin. 

3. Discussion 

3.1. MAI:Ltz or THE SOLUTION. — To sum up, convergent multiplicative processes repelled 
from the origin lead to power law distributions for the multiplicative variable to/ itself. Ideally, 
this holds true in the asymptotic regime, namely after an infinite number of stochastic products 
have been taken. This addresses a different question than that answered by the log-normal 
distribution for unconstrained processes which describes the convergence of the reduced variable 

(log 11), - (log w1)) to the Gaussian law. Notice that this reduced variable tends to zero for 
our problem and thus does not contain any useful information. 

We have presented an intuitive approximate derivation of the power law distribution and its 
exponent, using the Fokker-Planck formulation in a random walk analogy. Our main result 
is the explicit calculation of the exponent of the power law distribution, as a solution of a 
Wiener-HopE integral equation, showing that it is controlled by extreme values of the proms. 
We have also been able to extend the initial problem to a large class of systems where the 
common feature is the existence of a mechanism repelling the variable away from zero. We 
have in particular drawn a connection with the Kesten process well-known to produce power 
law distributions. The results presented in this paper are of importance for the description of 
many systems in Nature showing complex intermittent self-similar dynamics. 

3.2. THE EXPONENT µ. - In the Fokker-Planck approximation of the random walk analogy, p 
is the inverse of the size of the effective cavity trapping the random walk. In this approximation, 
p is a function of, and only of, the first two cumulants of the distribution of log A. In particular, 
if the drift H < 2D, p < 2 corresponding to variables with no variance and even no mean 
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when p < 1 (Iv' < D). It is rather intuitive: large fluctuations in A lead to a large diffusion 
coefficient D and thus to large fluctuations in tut quantified by a small µ. Recall that the 
smaller p is, the wilder are the fluctuations. 

Within an exact formulation, we have shown that there is a rather subtle phenomenon 
which identifies p as the inverse of the typical value of the largest excursion against the flow of 
a particle in random motion with drift. This holds true for a large class of models characterized 
by a negative drift and a sufficiently fast repulsion from the negative domain (in the z-variable), 
i.e. from the origin (in the w-variable). 

3.3. ADDITIONAL CONSTRAINT FIXING µ. — We recover the relationship relating p to the 
minimum value w0 in the reflecting barrier problem by specifying (1) the value C of the average 
(wt). Calculating the average straightforwardly using (14), we get (wt) = wo je_7 , leading to 

1 
µ — (30) 

1 — (wo/C).

Notice that this expression is a special case of (17) and should by no mean be interpreted as 
implying that p is controlled by wo in general. This is only true with an additional constraint, 
here of fixing the average. The gement! result is that p is given by (17), i.e. at a minknum by 
the two first cumulauts of the distribution of log A. 

3.4. POSITIVE Dung IN THE PRESENCE OF AN UPPER BOUND. — Consider a purely multi-
plicative process where the drift is reversed (log A) > 0, corresponding to an average exponen-
tial growth of tut in the presence of a barrier wo limiting we to be smaller than it. The same 
reasoning holds and a parallel derivation yields 

p -1 
Poo(we) = -4 O14 (31) 

with p > 0 again given by (17). This distribution describes the values 0 < cut < wo. Notice 
that, if p > 1, the distribution is increasing with tut. This is obviously no more a power law of 
the tail, rather a power law for the values close to zero. For p < 1, P,,o(wt) decays as a power 
law, however bounded by wo and diverging at zero (while remaining safely normalized). This 
shows that, when speaking of general power law distribution for large values, this regime is not 
relevant. Only the regime with negative drift and lower bound is relevant. 

However, in the case of Kesten variables (21), if St is growing exponentially with an average 
rate (log At) > 0, and if the input flow bt is also increasing with a larger rate r, we define 
tat = ern+116t, where be is a stochastic variable of order one. We also define At = stet. If 
r > (log at), then (log .;‘,0 < 0. 

The equation (1) thus transforms into a tt. ( = Stitt with $t = eft:, and where At 
and It obey exactly the conditions for our previous analysis to apply. The conclusion is that, 
due to input growing exponentially fast, the growth rate of tut becomes that of the input, 
its average (which exists for p > 1) grows exponentially as (Se) ^ en and its value exhibits 
large fluctuations governed by the power law probability density function P(St) 4:14,- with µ 

solution of (4) = erg, leading to µ = g111,A:?/ in the second order cumulant approximation. 

3.5. TRANSIENT BEHAVIOR. — Fbr t large but finite, the exponential (16) with (17) is trun-
cated and decays typically like a Gaussian for x > Vrit. Translated in the tut variable, the 
power law distribution (14) extends up to to, eVrn and transforms into an approximately 
log-normal law for large values. Refining these results for finite t using the theory of renewal 
processes is an interesting mathematical problem left for the future. 
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3.6. NON-STNIIONARY PROCESSES. — When the multiplicative process (1) is not stationary 
in time, for instancy if v(t),D(t) or xo(t) become function of time. then their characteristic 
time r of evolution must be compared with t•(x) = r 2/D. For "small- .r such that t°(x) C r, 
the distribution P(x,t) keeps au exponential tail with au exponent adiabatically following 
v(t),D(t) or xo(t). We thus predict a power law distribution for w: but with au exponent 
varying with v and D according to equations (11, 15). For "large" x such that r (x) ≥ r, the 
diffusion process has not time to reach x and to bounce off the barrier that the parameters 
have already changed. It is important to stress again the physical phenomenon at the origin of 
the establishment of the exponential profile: the repeated encounters of the diffusing particle 
with the barrier. For large x, the repeated encounters take a large time, the time to diffuse 
from x to the barrier back and forth. In this regime t"(x) ≥ r, the exponential profile for 
P(x) has not time to establish itself since the parameters of the diffusion evolve faster that the 
"scattering time" off the barrier. The analysis of the modification of the tail in the presence of 
non-stationarity effects is left to a separate work. In particular, we would like to understand 
what are the processes which lead to au exponential cut-off of the power law in the we variable, 
corresponding to an exponential of au exponential cut-off in the x-variable. 

3.7. STATus OF• THE PROBLEM. — Levy and Solomon (1) propose that the power law (14) 
is to multiplicative processes what the Boltzmann distribution is to additive processes. In the 
latter case, the fluctuations can be described by a single parameter, the temperature (fil-1) 
defined from the factor in the Boltzmann distribution e-". In a nutshell, recall that the 
exponential Boltzmann distribution stems from the fact that the number ft of microstates 
constituting a macro-state in an equilibrium system is multiplicative in the number of derstes
of freedom while the energy E is additive. This holds true when a system can be partitionned 
into weakly interactive sub-systems. The only solution of the resulting functional equation 
R(E1 + = fl(Eilf/(52) is the exponential. 

No such principle applies in the multiplicative case. Furthermore, the Boltzmann reasoning 
that we have used in Section 2.1 is valid only under restrictive hypotheses and provides at best 
an approximation for the general case. We have shown that the correct exponent µ is in fact 
controlled by extreme excursions of the drifting random walk against the main "flow" and not 
by its average behavior. This rules out the analogy proposed by Levy and Solomon. 
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