p— WARCH 1997, PAGE 43

Convergent Multiplicative Processes Repelled from Zero:
Power Laws and Truncated Power Laws

Didier Soruette (Y#*) and Rama Cont (1)

('} Laboratoire de Physique de la Matiere Condensée (77), Université des Sciences, BP 70,
Parc Valrose, 0G108 Nice Cedex 2, France

(*) Department of Earth and Space Science, and lostitnte of Geoplysics and Planetary Pliysics,
University of California, Los Anpeles, California 90095, USA

{Received 2 Septeuber 1996, received in final form 12 November 1996, accepted 20 November
10496}

PACS.05.40.4) - Fluctunation phenomena, random processes, and Brownian motion
PACS.64.60.Hr - Dynamie critical phenomena
PACS.05.70.Lo — Noneguilibrium thermodynamics, ireversible processes

Abstract. Lewy and Solomon have found that random multiplicative processes w, = A Az A
(with A; = U} lead, in the presenece of a boundary constraint, to a disteibution P{us, ) in the form
of 4 power law w, L T provide a simple exact physically intuitive derivation of this result
based on a random walk analogy and show the following: 1) the result applies to the asymptotie
(# =+ 20) distribution of wy and should be distinguished from the central limit theorem which
is & statement on the asvmptotic distribution of the reduced variable ﬁfl1l|{ wy — {log ) ); 2)
the two necessary and sufficient conditions for Plw) to be a power law are that {log A;) < 0
(corresponding to a drift w, — 0) and that w; not be allowed to become too swmall. We discuss
several models, previously thought unrelated, showing the common underlving mechanism for
the generalion of power laws by wultiplicative processes: Lhe variable log wy undergoes a random
walk repelled from —osc, which we describe by a Fokker-Planck equation. 3) For all these models,
we obtain the exact resnlt that g is solution of (A"} = 1 and thus depends on the distribution of
A. 4} For Hnite ¢, the power law is cut-olf by a log-normal tail, reflecting the fact that the random
walk has not the time to scatter off the repulsive force to diffusively transport the information
far in the tail,

Résumé, — Levy et Solomon ont montrd qu'un processus multiplicarif du type w, = Az A
{avec A; = 0) conduit, en présence d'une contrainte de bord, & une distribution P{w;) en loi de
riissEanon :r'!_ I mns proposons une dérivation siomple, intaitive ot esacte de oo eésaltar basie
sur une analogie avec une marche aléatoire. Nous obtenons les résultats suivants: 1} le régime de
lusi de puissance décrit la distribution asymptotioque de oy anx grands temps et doit étre distingné
du théoréwe limite central décrivant la convergence de la variable réduite ﬁ[lng wy = (log w))
vers la loi Gaussienne; 2) les deox conditions nécessaires et suffisantes pour gque Plw;) soit une
Lok e puissance sont (log A;) < 0 (correspondant & nne détive vers eéro) et la contrainte gue
soit emnpéchée de trop s'approcher de zéro. Cette contrainte peut étre mise en oeuvree de maniére
varide, généralisant & une grancde classe de modéles le cas d'une barritre réfléchissante examind
par Levy et Solomon. Nous donnons aussi un traitement approximatif, devenant exaect dans
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la limite oi la distribution de A est éiroite ou log-normale en terme d'équation de Fokker-
Planck. 3) Pour tons ces modiles, nous obtenons le résultat général exact que 'exposant p est
la solution de Uéguation (A} = 1. p est done noo-universel et dépend de la spécificité de la
distribution de A, 4) Pour des ¢ finis, la loi de puissance est tronguée par une quese log-normale
due i une exploration finie de la marche aléatoire,

1. Introduction

Many mechanisins can lead to power law distributions. Power laws have a special status due to
the absence of a characteristic scale and the implicit {to the physicist) relationship with critical
phenomena, a subtle many-body problem in which self-similarity and power Laws emerge from
cooperative effects leading to non-analytic behavior of the partition or characteristic function,
Recently, Levy and Solomon (1] have presented a novel mechanism based on random multi-

plicative processes;
Wiy = Apwy, (1)

where Ay is a stochastic variable with probability distribution ITI{A; ) and we express wy in units
of a reference value w,, which could be of the form e, with * constant. All our analysis below
then describes the distribution of wy normalized to w,, in other words in the “reference frame”
moving with w,. At the end, we can easily make reappear the scale w, by replacing everywhere
w by wiw,.

Taken literally with no other ingredient, expression (1) leads to the log-normal distribution
[2-4]. Indeed. taking the logarithm of (1), we can express the distribution of logw as the
convolution of t distributions of logA. Using the cumulant expansion and going back to the
variable wy leads, for large times ¢, to

1 1 1 Y
VaiDim P ['ﬁ““g“" -t 2)

where v = (logA) = [[7 dA log AII[A) and D = ((log A)*) — (log A\)*. Expression (2) can be
rewritten

F[w:}=

1 1

Plu) = pitime Jut 3
(we) V2Dt g} T 3

with i
uwe) = 550108 =5 (1)

Since p(uy ) is a slowly varving function of wy, this form shows that the log-normal distribution
can be mistaken for an apparent power law with an exponent p slowly varving with the range
wy which is measured. Indeed, it was pointed out [3] that for w, < e/*t2000 ylw,) < 1 and
the log-normal is undistingnishable from the 1/wy distribution, providing a mechanism for 1/ f
noise. However, notice that p(we) — 20 far in the tail w, = "2 apd the log-normal
distribution is not a power law,

The ingredient added by Levy and Solomon [1] is to constrain wy to remain larger than a
minimum value wy > 0, This corresponds to put back wy to wy as soon as it would become
smaller. To understand intnitively what happens, it is simpler to think in terms of the variables
xp = loguwy and | = log A, here following 1), Then obviously, the equation (1) defines a
random walk in e-space with steps | (positive and negative) distributed according to the density
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Fig. 1. — Steady-state exponential profile of the probability density of presence of the random walk
with a negative drift and a reflecting barrier.

distribution 7(I) = e'Il{e'). The distribution of the position of the random walk is similarly
defined: Ple, t) = e Pe™  t).

o [l v={I) = {logA) = 0, the randow walk is biased and driflts to +00. As a consequeuce, the
presence of the barrier has no important consequence and we recover the log-normal distribution
(2) apart from minor and less and less important boundary effects at xy = loguy, as increases,
Thus, this regime is without surprise and does wot lead to any power law. We can however
transformn this case in the following one v = (I} < 0 with a suitable definition of the moving
reference scale w, ~ e™ such that, in this frame, the random random drifis to the left. But
the barrier has to stay fixed in the moving frame, corresponding to & moving barrier in the
nnscaled variable .

e [fv = (I} <0, the random walk drifts towards the barrier, The qualitative picture is the
fullowing (see Figs. 1 and 2): a steady-state (# — o) establishes itself in which the net drife
to the left is balanced by the reflection on the rellecting barrier.  The raudom walk becomes
trapped in an effective cavity of size of order Dfv with an exponential tail (see below). Its
incessant. motion back and forth and repeated reflections off the barrier and dilfusion away
from it lead to the build-up of an exponential probability {concentration) profile (and no more
a Ganssian). The probability density function of the walker position @ is then of the form e #*
with g = |v|/D. As & is the logarithin of the random variable w, then oue obtains a power law
distribution for w of the form ~ w=1Hel,

We first present an intuitive approximate derivation of the power law distribution and its
exponent, using the Fokker-Planck formulation in a random walk analogy. In Section 2.2, the
problem is formulated rigorously and solved exactly in Section 2.5, Sections 2.3 and 2.4 are
generalization of the process (1), The explicit caleolation of the exponent of the power law
distribution is done using a Wiener-Hopf integral equation, showing that it is controlled by
extreme values of the process.
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Fig. 2. a} A typical trajectory of the random walker at large times showing the multiple reflections

off the barrier. b} The time evolution of the Kesten variable defined by the equation (19} with a,
uniformly taken in the interval [.48;1.48] leading to p = 1.47 according to (17) and b oniformly
taken in the interval [0; 1], Notice the intermittent large excursions.

2. The Random Walk Analogy
In the z; = log wy and §; = log A, variables, expression (1) reads
Ty =T + 14, (o)

and deseribes a random walk with a drift (fy < 0 to the left. The barrier at =y = logwy,
ensures that the random walk does not eseape to —20, This proeess is described by the Master
equation [1]
=0
Pla,t+1) = f () Pla =1, t)dl. (6)
—g

2.1. PERTURBATIVE ANALYSIS. To get a physical intuition of the underlying mechanisin,
we now approximate this exact Master equation by its corresponding Fokker-Planck equation.
Usually, the Fokker-Planck equation becomes exact in the limit where the variance of 7(l) and
the time interval between two steps go to gero while keeping s constant finite ratio defining the
diffusion coefficient [6]. In our case, this corresponds to taking the limit of very narrow =(l)
distributions. In this case, we can expand Pz — [ t) up to second order

, . ar 1.8*P
P[I —I.” = .‘ (I,” — EE {x.1] + EHF“I_”

leading to the Fokker-Planck formulation

OPt) __di(et) __ OPt) Pt
& - fr the gt

(7

where v = {I) and D = (I*) — {I'* are the leading cumulants of OlogA). jlz,t) is the lux
defined by
adPlc,t)

P4

e, t) =vPlx,t) = D (8)
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Expression (7) is nothing but the conservation of probability. It can be shown that this
description [7) is generic in the limit of very narrow o distributions: the details of = are
not important for the large ¢ behavior; only its first two cumulants control the results [G].
v and D introduce a characteristic “length™ # = D/f|v]. In the overdamped approxima-
tion, we can neglect the inertia of the random walker, and the general Langevin eguation

F]
m%.f- == —'_rﬂ_f =+ F + F:I'I1:|¢l [‘l_‘d,l].t_‘.E'EH to

d

— =+ it} )
m n(t) (9)
which is equivalent to the Fokker-Planck equation (7). 5 is a noise of wero mean and delta
correlation with variance D). This form exemplifies the competition between drift v = —|v| and
difTusion n(t).

The stationary solution of (7T}, % =0, is immediately found to be

Pocla) = A - EE_‘”. (10)

with
jhE =, (11}

A and B are two constants of integration. Notice that, as expected in this approximation
scheme, pis the inverse of the characteristic length &, In absence of the barrier, the solution
is obviously A = B = 0 leading to the trivial solution P, (z) = ), which is indeed the limit of
the log-normal form (2) when t — oo, In the presence of the barrier, there are two equivalent
ways to deal with it. The most obvious one is to impose normalization

fm'Px.l[r}dr =1, (12)

where @y = log wy. This leads to
Poo () = e P#lx—r0l, {13)

Alternatively, we can express the condition that the barrier at xg is reflective, vamely that
the flux jlwg) = 0. Let us stress that the correct boundary condition is indeed of this type
{and not absorbiug for instance) as the rule of the wultiplicative process is that we put back
iy to wy when it becomes smaller than twg, thus ensuring wy 2wy, An absorbing boundary
condition would correspond to Kill the process when wy < wy, Substituting (10) in (8) with
Jleg) = 0, we retrieve (13) which is automatically normalized, Reciprocally, (13) obtained
from (12} satislies the condition j(xg) = 0.

There is a faster way to get this result (13) using au analogy with a Brownian motion in
equilibrinm with a thermal bath, The bias {/} < 0 corresponds to the existence of a constant
foree —|v| in the —r direction. This foree derives from the linearly increasing potential V = |v|a.
In thermodynamic equilibrivm, a Brownian particle is found at the position @ with probability
given by the Boltzmann factor e=#"'*. This is exactly (13) with D = 1/4 as it should from
the definition of the random noise modelling the thermal Huctuations.

Translating in the initial variable wy = ¢*, we get the Paretian distribution

pucy

: 1+t
oy

Poo(uy) =

(14)
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with g given by (11):

_ [Qleg)]

~ {(log A)) — (log A

These two derivations should not give the impression that we have found the exact solution,

As we show below, it turns out that the exponential formn is correct but the value of p given
by {15} 15 ouly an approximation. As already stressed, the Fokker-Planck is valid in the limit
of narrow distributions of step lengths., The Boltzmann analogy assumes thermal equilibrivim,
e that the noise is distributed according to a Gaussian distribution, corresponding to a
log-normal distribution for the A's. These restrictive hypothesis are not obeyved in general for
arbitrary II{A). The power law distribution (14) is sensitive to large deviations not captured
within the Fokker-Plauck approximation.

(13)

2.2, Exacr Axawvsis. — lo the general case where these approximations do not hold, we
have to address the general problem defined by the equations (5, 6). Let us consider first the
case where the barrier is absent, As already stated, the random walk eventually escapes to
—oo with probability one. However, it will wander around its initial starting point, exploring
maybe to the right and left sides for a while before escaping to —oo. For a given realization,
we can thus measure the rightmost position oy, it ever reached over all times, What is
the distribution P, (Max(0, opnes)? The question has been answered in the mathematical
literature using renewal theory ( [7], p. 402) and the answer is

P:u&:[[hinEU| E:JJIMJJ - E_i'# n"u!' {IG}
with i given by
=+ a0 -+ o
f w(ledl =f (A M dX = 1. (17)
= i

The proof can be sketched in a few lines [7] and we sununarize it becanse it will be useful
in the sequel. Consider the probability distribution function M () = .]'fm p o £ S L —
that ry.; < &, Starting at the origin, this event .. < @ occors if the first step of the random
walk verifies 7) = y < x together with the condition that the rightmost position of the random
walk starting from —:r; iz less or equal to ¢ — . Summing over all possible g, we get the
Wicner-Hopf integral equation

M{:r}zf M (z — y)w(y)dy. (18)

It is straightforward to check that M{z) — ™" for large & with g given by (17). We refer
to [7] for the questions of uniqueness and to [9,10] for classical methods for handling Wiener-
Hopf integral equations, We shall encounter the same type of Wiener-Hopf integral equation
in Section 2.5 below which addresses the general case.

How is this result useful for our problem? Intuitively, the presence of the barrier, which
prevents the escape of the random walk, amounts to reinjecting the random walker and enabling
it to sample again and again the large positive deviations described by the distribution (16).
Indeed, for such a large deviation, the presence of the barrier is not felt and the presence of
the drift ensures the validity of (16} for large &, These intuitive arguments are shown to be
exact in Section 2.5 for a broad class of processes.

Let us briefly mention that there is another way to use this problem, on the rightmost
position @y, ever reached, to get an exponential distribution and therefore a power law dis-
tribution iu the wy, variable. Suppose that we have a coustant input of random walkers, say at
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the origin. They establish a uniform Hux directed towards —oo. The density (number per unit
lemgth) of these walkers to the right is obviously decaying as given by [16) with (17). This
provides an alterpative mechanism for generating power laws, based on the superposition of
mwany convergent multiplicative processes,

Let us now compare the two results (15, 17) for p. It is straightforward to check that (13)
is the solution of (17) when (1} is a Gaussian i.e. 11{A) is a log-normal distribution. (15) can
also be obtained perturbatively from (17): expanding e’ as ' = 1+ pl + Lp*F* + . up to
second order and re-exponentiating, we find that the solution of (17) is (15). This was expected
from our previous discussion of the approximation involved in the use of the Fokker-Planck
equation.

2.3, REcarion wird Kesres VaraBsues, — Consider the following mixture of multiplicative
and additive process defining o random affine map:

S =+ M5, (19)

with A and b being positive independent random variables. The stochastic dynamical process
(19) has been introduced in various oceasions, for instance in the physical modelling of 1D
disordered systems [11] and the statistical representation of financial time series [12]. The
variable S(t) is known in probability theory as a Kesten variable [13].

Consider as an example the number of fish Sy in a lake in the t-th year. The population Sy
in the (t+ 1)st vear is related to the population 8 through (19). The growth rate Ay depends
on the rate of reproduction and the depletion rate due to fishing as well as environmental
conditions, and is therefore a variable quantity. The quantity & describes the input doe to
restocking from au external source such as a lish hatchery in artificial cases, or [rom migration
from adjoining reservoirs in uatural cases. This model (19) can be applied to the problems of
population dynamics, epidemics, investment portfolio growth, and immigration across national
borders [8]. The justification of our interest in (19) relies on the fact that it is the simplest
finear stochastic equation that can provide an alternative modelling strategy for describing
comnplex time series to the nonlinear deterministic maps. Notice that the multiplicative process,
with a A; that can take values larger than 1, ensures an intermittent sensitive dependence on
initial conditions. The restocking term b, or more generally the repulsion from the origio,
corresponds to a reinjection of the dynamics, It is noteworthy that these two ingredients,
of sensitive dependence on initial conditions and reinjection, are also the two fundamental
properties of systemns exhibiting chaotic behavior.

b = 0 recovers (1) (without the barrier). For b £ 0, it is well-known that for {log A} < 0,
Sit) is distributed according to a power law

P(S;) ~ §7H, (20)

with g determined by the condition (17) [13] already encountered above (A} = 1. In fact, the
derivation of (20) with [17) uses the result [16) of the renewal theory of large positive exeursions
of a random walk biased towards —oo [12]. Figure 3 shows the reconstructed probability density
of the Kesten variable 5 for Ay and b uniformmly sampled in the interval [0.48; 148] and in [0, 1]
respectively. This corresponds to the theoretical value g = 1.47. We have also coustructed
the probability density function of the variations Spy, — 5, of the Kesten variable for the saine
values. We observe again a power law tail for the positive and negative variations, with the
salne exponent.

This is not by chanece and we now show that the multiplicative process with the reflective
barrier and the Kesten variable are deeply related. First, notice that for {log A) < 0 in absence
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Probability densily for Kesten variable
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2.5 3
log [ 5(t) )

Fig. 3. Reconsiructed natural logarithm of the probability density of the Kesten variable 5, as
a function of the logarithm of &, for 048 < A < 148 and 0 < b < 1, uniformly sampled. The
theoretical prediction p = LA7 from {17) is gquantitatively verified.

of b1}, 5y would shrink to zero. The term B(t) can be thought of as an ellective repulsion from
zero and thus acts similarly o the previous barrier wy. To see this more quantitatively, we
form

5}+L - Sﬂ ﬁf
—_— =t M1 21
S s 2
We make the approximation of writing the finite difference '3 as ﬁL It has the same
status as the one used to derive the Fokker-Planck equation and will lead tu results correct up
to the second cumolant. lntroducing again the variable © = log S, expression (21) gives the
overdamped Langevin equation:
il .
= = b{O)e™™ — vl +n(t), (22)

where we have written A(t) = 1 as the sum of its mean and a purely Auctuating part. We thus
get v = (A) =1 = {log &) and D = (y®) = (A%} = (A% = {log(A)®) = (log A)?. Compared to (9),
we see the additional term bt )e™", corresponding to a repulsion from the » < 0 region. This
repulsion replaces the reflective barrier, which can itself in turn be modelled by a concentrated
foree, The corresponding Folkker-Planck equation is

aF(u,t)
i

I[.r t) & Pla,t)
B :

D55

= bithe™ Pz, t) = (v + bit)e _‘]I (23)
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It also presents a well-defined stationary solution that we can easily obtain in the regions
x = +oo and ¥ = —o0. In the first case, the terms b{#)e * can be neglected and we recover
the previous results (13) with zy now determined from asvmptotic matching with the solution
at ¥ = —oo. For @ = —o20, we can drop all the terms except those in factor of the exponentials
which diverge aud get Plr) — ¢, Back in the wy variable, P (5;) is a constant for 5; — 0
and decays algebraically as given by (14) with the exponent (11, 15) for 5; — +o0c. Beyond
these approximations, we can solve exactly expression (21) or equivalently (19) and we recover
(17). This is presented in Section 2.5 below. Again, notice that {11, 15) is equal to the solution
of (17} up to second order in the cumulant expansion of the distribution of log A

It is interesting to note that the Kesten process (19) is a generalization of branching processes
[14]. Cousider the simplest example of a branching process in which a branch can either die
with probability py or give two branches with probability po = 1= py. Suppose in addition that,
at each time step, a new branch nucleates. Then, the numher of branches 5;.; at generation
t+ 1 is given by equation (19) with & = 1 and A = j_' L owhere ji.y is the number of
branches out of the 5; which give two branches. The distribution [T(A) is simply deduced from

. . . . " . =, 01 ; S —i
the binomial distribution of j;4,;, namely (j:‘?mphﬂ L S JreipSi=die1 For
l!l 1)

large S, LI(A) is approximately a Gaussian with a standard deviation t-qual tin —LL , e it
goes to gero for large S;. We thus pinpoint here the key difference between ﬂ!ﬂld.lIl‘l h-mm hing
processes and the Kesten model: in brauching models, large generations are self-agveraging in
the sense that the npumber of children at a given generation HQuctuates less and less as the size
of the generation increases, in contrast to equation (19) exhibiting the same reflative Huctuation
amplitude, This is the fundamental reason for the robustness of the existence of a power law
distribution in vontrast to branching models in which a power law s found only for the special
critival case py = po (for py > po, the population dies off, while for py < po the population
prolifates exponentially). The same conclusion carries out directly for more general branching
models. Note finally that it can be shown that the branching model previously defined becomes
equivalent to a Kesten process if the number of branches formed from a single one is itself a
random variable distributed according to a power law with the special exponent g = 1, ensuring
the scaling of the fuctuations with the size of the generations.

2.4, GEngrALIZATION 10 A Broap CLass oF MuLnipuicanve PROCESS with REpuLsion
Al THE OrigiN. — The above considerations lead us to propose the following generalization

Wiy = of b Dy, (24)

where flwy, {Ae, by, ... })) = 0 for wy —r a0 and flwy, { A by, ) = 20 for wy — 0.
The model (1) is the special case flwy, {A, by, o }) = 0 for wy > wg and flawyg, (A b)) =
log( %%-) for wy < wy, The Kesten model (19) is the special case flwe, {A, b, }) = log(1 +

%'%}. More generally, we can consider a process in which at each thne step ¢, after the variable
Ay 1s generated, the new value Ajw, {or Apwy + by in the case of Kesten variables) is readjusted
by a factor efenddebe b peflecting the constraints imposed on the dynamical process. It is
thus reasonable to consider the case where fluy, {A, b, . }) depends on ¢ ooly through the
dynamical variables Ay (and in special cases b)), a condition which already holds for the two
examples above. In the following Fokker-Planck approximation, we shall consider the case
where fluw;, { A, by, ... }) is actually a function of the product Aguwy, which is the value generated
by the process at step t and to which the constraint represented by f(Aquy) is applied. We
shall turn back to the general case (24) in Section 2.5,

In the Fokker-Planck approximation, f{Aqw, ) defines an effective repulsive stochastic foree,
To illustrate the repulsive mechanism, it is enough to consider the restricted case where f(wy)
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Fig. 4. — Generic form of the potential whose gradient gives the force folt by the random walker.
This leads to a steady-state exponential profile of its density probability, corresponding to a power law
distribution of the we-variable,

is only a [unction of wy. This corresponds to Ireezing the randomn part in the noise term A
leading to the definition of the diffusion coellicient. In the random walk analogy, we thus
have the force Flay) = fluwy) acting on the random walker, The corresponding Fokker-Planck
equation is
dP(x,t) v+ Flx))Plx,t) +Da=r[z.:}
T i et
F{x) decays to zero at = — 0o and establishes a repulsion of the diffusive process in the negative
o region: this is the translation in the random walk analogy of the condition f{w:) — oo for
wy —+ (.

With these properties, the tail of P(x) for large © and large times is given by Po(z) ~ e #F
and as a consequence uy 18 distributed according to a power law, with exponent g given again
approximately by (11, 15). The shape of the potential defined by v+ Fzx) = = E—';';P, showing
the fundamental mechanisin, is depicted in Figure 4. As we have already noted, the bound
iy leading to a reflecting barrier is a special case of this geueral situation, corresponding to a
concentrated repulsive force at xp.

The expression (24) for the general model can be “derived” from the overdamped Langevin
equation equivalent to the Fokker-Planck equation (25):

de _
dt

(25)

Flx) = |v| + 5lt). (26)

Let us take the discrete version of (26) as xppq = ap + Flay) — |v| + 0y, replace with o = log w,
and exponentiate to obtain _
g = et OBW N, {27}

where Ay = e~ Since F(x) = 0 for large wy, we recover a pure multiplicative model
wpgr = Ay for the tail. The condition that Fx) becomes very large for negative & ensures
that wy cannot decrease to zero as it gets multiplied by a diverging numwber when it goes to
LT,

2.5. ExacT DERIVATION OF THE TAIL OF THE POWER Law DISTRIBUTION. — The existence
of a limiting distribution for w; obeying (24), for a large class of flw, {A b, .. }) decaying to
zero for large w oand going to iofinity for w — 0, 15 ensured by the competition between
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the convergence of w to zero and the sharp repulsion from it. We shall also suppose in what
follows that & f(w, {A b, .. })fdr = 0 for w — oo, which is satisfied for a large class of simooth
functions already satisfving the above conditions. It is an interesting mathematical problem
to establish this result rigorously, for instance by the method used in [1,10]. Assuming the
existence of the asymptotic distribution Plw), we can determine its shape, which must obey

v=we A DI ), (28)
where {A, b, ...} represents the set of stochastic variables used to define the random process.

The expression (28) means that the LLh.s. and r.hs. have the same distribution. We can thus
write

+oo +oo 90 g v
Puv) =f AT f dw P (w)8(v — Aw) = f Lanp ().
o ] ]
Introducing V' =logv, « = logw and [ = log A, we get
+0
PiV)= j dN LI PV = 1), (29}
o)

Taking the logarithm of (28). we have V' = & — f(x, {A.b,...}), showing that V — = for
large © > 0, siuce we have assumed that f(r,{\.b,..}) = 0 for large x. We can write
P(V)AV = P (z)dx leading to P(V) = sgritinoyyme — Pe(V) for 2 & oc. We thus
recover the Wiener-Hopl integral equation (18) yielding the announced results {16) with {17)
and therelore the power law distribution (14) for wy with g given by (17).

This derivation explains the origin of the generality of these results to a large class of con-
vergent multiplicative provesses repelled from the origin.

3. Discussion

3.1, Naruke or rHe SoLuriox. — To sum up, convergent multiplicative processes repelled
from the origin lead to power law distributions for the multiplicative variable wy itself. Ideally,
this holds true in the asvmptotic regime, namely after an infinite number of stochastic products
have been taken. This addresses a different question than that answered by the log-normal
distribution for unconstrained processes which describes the convergence of the reduced variable
:ﬁ-;tlug wy — (logw)) to the Gaussian law. Notice that this reduced variable tends to zero for
our problem and thus does not contain any useful information,

We have presented an intuitive approximate derivation of the power law distribution and its
exponent, using the Fokker-Planck formulation in a random walk asalogy., Our maln result
is the explicit calculation of the exponent of the power law distribution, as a solution of a
Wiener-Hopf integral equation, showing that it is controlled by extreme values of the process,
We have also been able to extend the initial problem to a large class of systems where the
commen feature is the existence of a mechanism repelling the variable away from eero. We
have in particular drawn a connection with the Kesten process well-known to produce power
law distributions. The results presented in this paper are of importance [or the description of
many systems in Nature showing complex intermittent sell-similar dynamics,

3.2. THE EXPONENT . — In the Fokker-Planck approximation of the random walk analogy, p
is the inverse of the size of the effective cavity trapping the random walk. In this approximation,
gt is a function of, and only of, the first two cumulants of the distribution of log A, In particular,
if the drift |v| < 2D, g < 2 corresponding to variables with no variance and even no mean
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when g < 1 (|v| < D). It is rather intuitive: large fluctuations in A lead to a large diffusion
coefficient [ and thus to large Huctuations in owy gquantified by a small g Recall that the
smaller p is, the wilder are the fluctuations.

Within an exact formmulation, we have shown that there is a rather subtle phenomenon
which identifies g as the inverse of the typical value of the largest excursion against the How of
a particle in random wotion with drift. This holds true for a large class of models characterized
by & negative drift and a sufficiently fast repulsion from the pegative domain (in the a-variable),
i.e. from the origin (in the w-variable),

3.3. ApprrioNaL ConsTRAINT Fixing g, — We recover the relationship relating g to the
minimum value wy in the reflecting barrier problem by specifving [1] the value C of the average
{wy). Calculating the average straightforwardly using (14}, we get (uwy) = qu—Jf‘—l, leading to
1

=

M T (wo/0)
Notiee that this expression is a special case of (17) and should by no mean be interpreted as
implying that g is controlled by wy in general, This is only true with an additional constraint,

here of fixing the average. The general result is that g is given by (17), f.e. at a minimum by
the two first cumulants of the distribution of log A.

(30)

3.4, Positive DriFr an THE PrESENCE OF AN Uprper Bounp., — Consider a purely multi-
plicative process where the drift is reversed (log A} > 0, corresponding to an average exponen-
tial growth of wy in the presence of a barrier wy limiting wy to be smaller than it. The same
reasoning holds and a parallel derivation yields

I
Pt} =
with g = 0 again given by (17). This distribution describes the values 0 < wy < wy. Notice
that, if g = 1, the distribution is increasing with wy. This is obviously no more a power law of
the tail, rather a power law for the values close to eero. For g < 1, Py (wy) decays as a power
law, however bounded by wp and diverging at zero (while remaining safely normalized). This
shows that, when speaking of general power law distribution for large values, this regime is not
relevant. Only the regime with negative drift and lower bound is relevant.

However, in the case of Kesten variables (21), if 5 is growing exponentially with an average
rate {logA) > 0, and if the input flow by is also inereasing with a larger rate v, we define
by = erlt+Uh,  where @r is a stochastic variable of order one. We also define A, = Ae'. If
r = (log a), then (log Ay < 0,

The equation (1) thus transforms into SHI = MS; + by, with 8 = e™5,, and where A
and by obey exactly the conditions for our previous analysis to apply. The conclusion is that,
due to input growing exponeutially fast, the growth rate of wy becomes that of the input,
its average (which exists for g > 1) grows exponentially as (S,) ~ e™ and its value exhibits
large Huctuations governed by the power law probability density function P(S,) ~ 55['-4_'7 with j

wi !, (31)

n . ¢ ¢ ® = n
solution of (A} = e™, leading to p = :’;_i:” in the second order cumulant approximation.
i

3.5, Transienr Bedaviow. — For ¢t large but finite, the exponential (16) with (17) is trun-
cated and decays typically like a Gaussian for = > «'Dt. Translated in the w, variable, the
power law distribution (14) extends up to wy ~ ¢¥P! and transforms into an approximately
log-normal law for large values, Refining these results for finite # using the theory of renewal

processes is an interesting mathematical problem left for the future.
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3.6. NON-STATIONARY PROCESSES. When the multiplicative process (1) is not stationary
in time, for instance if v(t), D(t) or zp(t) become function of time, then their characteristic
time 7 of evolution must be compared with ¢*(z) = 2°/D. For “small” = such that t*(x) < 7,
the distribution P{r, i) keeps an expouential tail with au expowent adiabatically following
v(t), D{E) or aplt). We thus predict a power law distribution for wy but with an exponent
varying with v and D) according to equations (11, 15). For “large” r such that t*(x) = 7, the
diffusion process has pot time to reach ¢ and to bounce off the barrier that the parameters
have already changed. It is important to stress again the physical phenomenon at the origin of
the establishment of the exponential profile: the repeated encounters of the diffusing particle
with the barrier. For large x, the repeated encounters take a large time, the time to diffuse
from & to the barrier back and forth. In this regime {*(x) = 7, the exponential profile for
Plz) has not time to establish itself since the parameters of the diffusion evolve faster that the
“scattering time” off the barrier. The analysis of the modification of the tail in the presence of
non-stationarity effects is left to a separate work. In particular, we wonld like to understand
what are the processes which lead to an exponential cut-off of the power law in the wy variable,
corresponding to an exponential of an exponential cut-off in the r-variable.

3.7. 51ATUS OF THE PHOBLEM. Levy and Solomon [1] propose that the power law (14)
is to multiplicative processes what the Boltzmann distribution is to additive processes, In the
latter case, the fAuctuations can be described by a single parameter, the temperatare (3°1)
defined from the factor in the Boltzmann distribution ¢ 9%, In a nutshell, recall that the
exponential Boltzsmann distribution stems from the fact that the number 9 of microstates
constituting a macro-state in an equilibrivm system is muoltiplicative in the number of degrees
of freedom while the energy E is additive. This holds true when a svstem can be partitionned
into weakly interactive sub-systems. The ouly solution of the resulting functional equation
HE, + Ey) = QE N E,) is the exponential.

No such principle applies in the multiplicative case. Furthermore, the Boltzmann reasoning
that we have used in Section 2.1 is valid only under restrictive hypotheses and provides at best
an approximation for the general case, We have shown that the correct exponent g is in fact
controlled by extreme excursions of the drifting random walk against the main “low” and not
by its average behavior, This rules out the analogy proposed by Levy and Solomon,
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