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A new ensemble interpretation of quantum mechanics is proposed according to which the ensemble associated 
to a quantum state really exists: it is the ensemble of all the systems in the same quantum state in the universe. 
Individual systems within the ensemble have microscopic states, described by beables. The probabilities of 
quantum theory turn out to be just ordinary relative frequencies probabilities in these ensembles. Laws for the 
evolution of the beables of individual systems are given such that their ensemble relative frequencies evolve in 
a way that reproduces the predictions of quantum mechanics. 

These laws arc highly non-local and involve a new kind of interaction between the members of an ensemble 
that define a quantum slate. These include a stochastic process by which individual systems copy the beables of 
other systems in the ensembles of which they are a member. The probabilities for these copy processes do not 
depend on where the systems arc in space, but do depend on the distribution of beables in the ensemble. 

Macroscopic systems then are distinguished by being large and complex enough that they have no copies in 
the universe. They then cannot evolve by the copy law, and hence do not evolve stochastically according to 
quantum dynamics. This implies novel departures from quantum mechanics for systems in quantum states that 
can be expected to have few copies in the universe. At the same time, we are able to argue that the centre of 
masses of large macroscopic systems do satisfy Newton's laws. 

Contents 

I. Introduction 2 
A. Basic hypotheses 3 
B. More about beables and interactions amongst members of an ensemble 3 

H. The real ensemble formulation of quantum mechanics 5 
A. Kinematics and dynamics of individual systems 5 
B. Restrictions on the evolution rules 6 

I . Good large N limit 6 
2. Time reversal invariance 7 

HI. Recovery of the Schroedinger equation 
A. Final form of the evolution rules 

7 
8 

I.V. A possible approach to phase alignment 9 

V. The classical limit 10 

VI. Issues that require more investigation 12 

VII. Conclusions 13 

ACKNOWLEDGEMENTS 14 

References 14 

EFTA_R 1_02022330 

EFTA02688804



2 

I. INTRODUCTION 

In this paper we propose a novel interpretation of quantum mechanics that offers new answers to some basic questions about 
quantum phenomena. 

I. Why do microscopic systems have indefinite values of observable, while macroscopic systems have definite values? 

2. What is the meaning of the probabilities in quantum physics? 

3. If the quantum state is associated to an ensemble, where are the members of the ensemble to be found? 

This new interpretation is a theory of beables, and hence solves the measurement problem by asserting that there is a real state 
of affairs in any quantum system given by the values of the beables. At the same time, we assert that the quantum state describes 
an ensemble of individual systems. 

Resolving the measurement problem by means of a theory of beables recalls existing hidden variables theories such as those 
of dcBroglic Bohm' I, 21, Vinkpt and Nelson(4]. However, we aspire to remove an awkward feature of those theories which is 
that the dynamics of the beables of individual systems depend on the wavefunction. In the formulations of de Broglie. Bohm 
and Vink this is expressed by an equation which asserts that the particle moves in a quantum potential, which is built from 
derivatives of the wavefunction. In Nelson's stochastic formulation of quantum theory the osmotic velocity depends on the 
wavefunctiont4, SI. This dependence of the dynamics of individual beables on the wavefunction is a characteristic, but most 
mysterious feature of quantum theory. 

This dependence is awkward because of a principle, which we can call the principle of explanaory closure: anything that is 
asserted to influence the behavior of a real system in the world must itself be a real system in the universe. It should not be 
necessary to postulate anything outside the universe to explain the physics within the one universe where we live'. This means 
that the wavefunction must correspond to something real in the world. In the de Broglie-Bohm interpretation this is satisfied by 
asserting that the wavefunction is itself a beable. This results in a dual ontology-both the particle and the wavefunction are real. 

But this violates another principle, which is that nowhere in Nature should there be an unreciprocated action. This means that 
there should not be two entities, the first of which acts on the second, while being in no way influenced by it2. But this is exactly 
what the double ontology of deBroglie-Bohm implies, because the wavefunction acts on the particles, but the positions of the 
particles play no role in the Schroedinger equation which determines the evolution of the wavefunction. 

A class of interpretations called "statistical interpretations" aim to overcome the double ontology by asserting that the wave-
function corresponds to an ensemble of systems. But this falls short of satisfying the principle of explanatory closure unless 
that ensemble really exists in the world. It is not sufficient to posit that the wavefunction corresponds to an cpistcmic ensemble 
that is defined in terms of our ignorance of the world. Neither is it acceptable to imagine that there is a spooky way in which 
"potentialities affect realities:' If the behavior of individual systems is to depend on a wavefuction which corresponds to an 
ensemble, then the principle of explanatory closure demands that each and every member of that ensemble be a physical system 
in the universe. 

But if the elements of the ensemble the quantum state represents exist. then perhaps the apparent influence of the wavefunction 
on the individual entities could be replaced and explained by interactions between the elements of the ensemble. By so explaining 
the influence of the quantum state on the individual system in terms of a new kind of interaction posited to act between members 
of the ensemble that the quantum state represents, we satisfy both the principle of explanatory closure and the principle of no 
unreciprocated action. 

In interpretations in which the ensemble is epistemic it would not make sense to posit interactions amongst members of the 
ensemble because it would mean that physical particles-the distinguished member of the ensemble that are real- are interacting 
with shadows that reside only in our ignorance of their true motions. It would be to have reality depend explicitly on possibility. 
But if all the elements of the ensemble are real then there is no barrier to positing new kinds of interactions amongst them. 
These interactions arc certainly non-local. But we already have strong reason to assert that any theory of beables that reproduces 
quantum mechanics must be highly non-local. 

This leaves us with one more question to answer: where do the members of the ensemble corresponding to the ground state 
of the hydrogen atom reside? There is a simple, but novel answer that can be given to this question: in the universe. That is. 
the ensemble corresponding to a hydrogen atom in as ground state is the real ensemble of all the hydrogen atoms in the ground 
state in the universe. 

The test of this general idea is whether a simple form can be proposed for the interactions amongst the members of the 
ensemble, that reproduces quantum kinematics and dynamics. In fact, we will see that a simple form of the interactions, in 

This argument and its implications are developed in 181. 
'1 Einstein invoked this princniple in a 1921 talk where he objected to "the postulation: in Newtonian mechanics. "of a thing (the spacetime continuum) which 

acts without being acted upon" 191. 
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which the members of the ensemble interact in pairs, suffices. This simple interaction is that the beables of systems in the 
ensemble copy each other's states, with a probability that depends on the beables of the systems in the ensemble. 

Let us now proceed to make these ideas more concrete. This interpretation is based on several simple hypotheses: 

A. Basic hypotheses 

• Quantum mechanics applies to small subsystems of the universe which come in many copies. Thus, it applies to hydrogen 
atoms and ammonia molecules, but not to cats or people or the universe as a whole. Quantum mechanics is hence an 
approximation to an unknown cosmological theory. 

• For each microscopic system, there is an ensemble of systems in the universe with the same constituents, preparation and 
environment. A pure quantum state is a statistical description of one of these ensembles. The elements of the ensemble 
will be labeled .5/ where / = I ....,N. 

• Each individual microscopic system. Sr in the ensemble has two beables. The first is the value of some observables, which 
will be denoted b. The possible values of B are indexed by a = I,...P and are denoted tea. The second beable is a phase 
e4i. We then assert that the microscopic state of an individual system is the value of the pair of beables, (ahet ). 

• The beables evolve by a discrete and probabilistic Me. There is a probability in each unit time that each system sr copies 
the beables of system St. When this happens. 

al —1Oj, e4t —o est (I) 

The probability that this happen will be assumed to be a function of the beables of the two systems as well as the number 
of systems with the same values of A in the ensemble. It does not depend on where the members of the ensemble are in 
the universe. 

• The phases also evolve continuously according to a law that also depends on the distribution of beables in the ensemble. 

• We hypothesize that there is a process of phase alignment, by which the phases of two systems with the same values of 
evolve to become equal. The dynamics as first posited below conserves the alignment of phases. After that I present a 

model for the dynamic alignment of phases. 

• Finally, we hypothesize that these ensembles arc well mixed by the dynamics just described, so that the probability to 
make a measurement of the beable a on any member of the ensemble and get a particular value, ba, is given by the relative 
frequency with which that value appears in the ensemble. 

We will expand on the motivation for these hypotheses shortly, and then show how they may be expressed in a form that is 
equivalent to quantum mechanics. But what we have said is sufficient to answer the questions with which we opened. 

I. Microscopic systems have indefinite values of beables. while macroscopic systems have definite values, because micro-
scopic systems come in many copies, and so are subject to the copy rule, in which they evolve stochastically by copying 
the beables of members of the ensemble they share. Macroscopic systems are those that have no copies, anywhere in the 
universe, hence they are nor subject to the copy dynamics. 

2. The probabilities in quantum physics refer to ordinary relative frequencies in an ensemble of real. existing systems. 

3. The members of the ensemble are to be found spread throughout the universe. 

B. More about beables and Interactions amongst members of an ensemble 

Before we go on to develop the hypotheses just stated it would be good to revisit some aspects of the motivation. We begin 
with the similarities and differences to other theories of beables. 

This proposal shares with hidden variables theories such as deBroglie-Bohm,Vink and Nelson the idea that there am real 
beables. It shares with Nelson also the idea that pure quantum states correspond to ensembles of individual systems. However, 
it differs from all of these interpretations in asserting the ensemble be physically real, as well as in several other respects. 

First, it eliminates the need to pick the configuration space as a beable. In what follows there is assumed to be a beable 
observable, A but its choice is inessential. That this is possible was shown by VinkI3), by giving a deBroglie-Bohm like 
formulation for a general choice of beables. Indeed, some of the formal development that follows was inspired by Vink's 
paper13]. Whether there is a preferred choice for it is a subject for future work. 
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Second, we eliminate the double ontology which requires that both the positions of the particles and the wavefunction be 
beables. This can be criticized as an extravogent hypothesis, which makes the world as ontologically bizzare as interpretations 
such as many worlds that posit the reality of the quantum state. 

However, the lesson of Nelson's formulation 141, is that, as explained in l5l, one cannot succeed in making the whole wave-
function just a derived property of an ensemble, derived from the values of configurations of individual systems. Given the form 
of the wavefunction, 

%Kass) = VI: eis(" ) (~) 

it is certainly appropriate to regard the probability density p(x,t) as a property of the ensemble and we will do so. But it is much 
more challenging to regard the phase .5(x,r) as derived from an ensemble. For one thing, the deterministic evolution equation for 
the position beable of deBrogle-Bohm theory has the velocity depend on S(.r,t). But, if the rates of change of beables depend 
on S(x,i) it seems that by our principle of explanatory closure, S(.r,i ) must also be a beable, or must be determined by beables. 
But then this contradicts our second principle of no unreciprocated influence and we find ourselves in trouble. 

To get out of trouble we take a new approach to this conundrum. We posit that each individual microscopic system has a 
second beable, which is a phase. e*. We also posit that the dynamics forces these to a class of configurations in which they 
come to depend on the other beables E. Hence " , where at is the value of the beable A in the system /. Once that is the 
case the information to determine the function SC; 0 is to be found distributed in the phase beables of all the individual systems 
in the ensemble. 

An interaction between the beables of individual systems that make up an ensemble that is described by the quantum state 
may seem a strange and novel idea. But once we regard the members of the ensemble as all physically real, this is just another 
interaction between systems in the universe. Certainly these interactions are highly non-local, but we already know from the 
experimental tests of the Bell inequalities that any theory of beables that reproduces quantum theory must be highly non-local. 
After all, at one time the idea of an interaction between the Sun and the planets seemed bizzare, because it was a non-local action 
at a distance. 

Once one accepts this general idea, the next step is to ask how the dynamics of an individual system can depend on the 
beables of other members of the ensemble in such a way that the predictions of quantum mechanics can be obtained. This 
is accomplished in the next section. We will see that to match the quantum evolution in this picture there must be both a 
stochastic and a continuous evolution rule. There is a stochastic process by which one member of the ensemble can copy the 
beables of another member of the ensemble. This stochastic process realizes an idea that the beables of a system we prepare 
here becomes unpredictably shuffled up with the beables of all the similarly prepared systems in the universe. There is also a 
continuous evolution of the phase beables. Both the stochastic and continuous evolution rules depend on relative frequencies in 
the ensemble. 

One motivation for the copy rule is the idea that space is an emergent property, as suggested by several proposals for quantum 
gravity. If space is emergent. then so is locality. From this perspective, two systems with the same constituents, preparations 
and environment, but only distinguished by their location in space. may be more closely related than is usually thought. Indeed. 
we already know that quantum statistics allows us to give a list of positions where hydrogen atoms in their ground states are to 
be found, but does not permit us to assert which hydrogen atom is in which position. If this extends to the level of the beables, 
then distinct beable configurations may not be stably located with respect to distinct positions in space. The whole ensemble 
of beable states of identical subsystems may then evolve in a way that is not captured by the usual local interactions. The copy 
rule is a simple suggestion for this new kind of interaction, which has a simple realization that reproduces quantum mechanics. 
Other rules might be contemplated, but as we will see the copy rule suffices for our purposes. 

What is nice about the copy rule is that it by itself gives all the dynamics the beables need. Imagine making a series of 
measurements of the beable of an atom you hold in your laboratory. The first measurement is 00. The second is different, it 
is an. The explanation is not that there was a process by which as evolved to at but that au was copied from another version of 
that atom somewhere in the universe. Evolution occurs because on subsequent observations you will be seeing beables copied 
from the ensemble. This appears to be like motion as a consequence of the rule that gives the probability for the copy process. 
Indeed, we will see in Section V that in an appropriate limit in which h can be ignored this can account for classical motion of 
large bodies. 

In the next section we put the hypotheses we stated above into precise mathematical form and impose several reasonable 
physical assumptions on the evolution rules. In section III we show that a very simple form of the rules then leads to the 
derivation of Schrodinger quantum mechanics. Section IV presents a model for phase alignment. This is a dynamics for the 
phases e4' which has a set of degenerate zero energy solutions that impose both phase alignment and Schrodinger dynamics. 
There are however issues of the stability of these solutions that remain a subject for further work. In section V we raise 
and resolve a question unique to this conception of quantum mechanics, which is whether we can derive the fact that large 
macroscopic bodies obey Newton's laws, while respecting the assertion that their precise microscopic states may be unique, and 
hence not part of a large ensemble. A list of open questions is the substance of section VI. and the conclusions are stated in 
section VII. 
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II. THE REAL ENSEMBLE FORMULATION OF QUANTUM MECHANICS 

A. Kinematics and dynamics of individual systems 

The hypotheses we enunciated above become a formulation and interpretation of quantum mechanics, when we give them a 
precise instantiation. 

• Kinematics: description of individual states The state of an individual microscopic system, Sr consists of the pair of 
beables. (abets) 

• The ensemble of similarly prepared states. This system is one of N similarly constituted systems in the universe, which 
have been prepared in the same state and are subject to the same external forces as they evolve. These are labeled by 
I. I, ..., N. The state of the ensemble is specified by the collection of pairs, Hal (t).e4 (0)}. 

• Ensemble state variables. The individual system evolves partly by a stochastic process. Because of this, an observer 
studying a particular member of the ensemble, cannot predict with certainty which beables she will measure if she makes 
a measurement at a later time. She can predict probabilities for different beables to be observed, which are derived from 
relative frequencies for the states in the ensemble. The relative frequencies n°(t) are defined to be the number of systems 
in the ensemble which have beable value a at time r. These are normalized to L A, = N. We will also write al for the 
state of the I'th system and n1= na, for the number of copies in the ensemble of the beables of system Sr . 

• Dynamics of individual systems There are two modes of evolution of the beables of a system. 

Stochastic evolution rule. There is a stochastic evolution by means of which the system 5 / can copy the beables of the 
system 51. 

The rate by which system / copies the beables of system J is assumed to be of the form 

P(/copy./) = F(abObni3Ohabaj) (3) 

When this happens the properties of the system Sr inherits the properties of system 51 so that 

a/ —) aJ, es, (4) 

We note that the rate a system I copies the state of system J is determined entirely by the beables of the two systems 

N iCOPM1b=ba =a) = F (ea nap Sap = F (nap Oa nor  tai )ab (5) 

This defines the rates of copying F(nap+a,,naj otai )on as functions of the beables. We note that by definition the compo-
nents of Fab must be all positive. 

Continuous evolution rule. When this mixing up or copying of the individual states does not happen. the phase evolves 
continuously in a way that depends on the ensemble. This must have the general form 

= ;G(irb(libn.r.4ij,aba.r) (6) 

• Evolution of the occupation numbers na

We define the occupation numberssia, to be the number of members of the ensemble in state a. They evolve as follows 

= ;; 6aal ( — kin) IPVcoPY-0 nicoPY I)) 

= ; lb.16,,..,bb,„[P(Icopyi)—P(Icopy I)) 

= nbna [Fd, — Pk) 
7a 

• Evolution of the probability densities 

From this we can write down a law for the evolution of the probability densities, defined by 

no
Pa = — N 

(7) 

8 
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These must evolve as[3] 

Po = (Phrb-ea Para-.b) (9) 

where Tb.0 are transition rates. 

From (3) above we see that 

Tb_ki = F(naripai,no,..bi)ddla (10) 

This is because the probability to copy a beable value a will be proportional to how many members of the ensemble 
presently have that value. 

Phase alignment. There is a specialization of the evolution rules which we will have to make to derive quantum mechanics 
from this general framework. This is that 

= (II) 

ie the phases are functions of the variables at. This will be called phase alignment. This is a stable condition, because 
once set as an initial condition it is preserved by the evolution rule (6). This is because we have then 

r[ri  = 

= ;nbG(nbi .Ob,•noi •taj'abaj) 

= ;Gin ar cpai.n„.,..„.,,abaj) (I2) 

This implies that 

= ;G i(rta•tams•Ss)as• (13) 

where 64(rlaita,nsotb)„,, = nbG(naptar naj ,4101 (Thai). 
In section V we will describe and study a more general evolution law has solutions which achieve phase alignment, but in 
this and the next section we assume the phases have been aligned initially. 

B. Restrictions on the evolution rules 

We can introduce some physical considerations which will allow us to restrict the form of F and G. 

I. Good large N limit 

First, we do not have any evidence the probabilities for quantum states to evolve depend on the size of the ensemble of 
similarly prepared systems. So we require that Tb-40 and C depend on ratios Z. We can also posit that only relative phases are 

relevant, so that Ti -.a and C depend on #(41-40 . These together give us 

FQII,Sba.,,Mabno= r( 111,ei*s-4'.0)a 
so 

and similarly for C. 

G(no* islo•So)ab = G (t ,e'f4"-4a))ab 
nb 

These equations assume all the nb >> I. There can be additional terms that go away in the limit no >> I 

(14) 

(15) 
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2. Time reversal invariance 

It is easy to see that these forms are constrained by time reversal invariance. 
To see the implications of this let us consider an ansatz, which will be sufficient to recover quantum theory. 

9 
ri(°",e4-1-0- )).b= fael(41" -.11))ab 

lib 

a(a,e(0.-406 = (a)r v 00.-•6)6 
nb nb 

Note that it(eaal -0° t ))„1, must be positive. 
We have then. because & = &, 

= 
T 

 (P b Pa
')epot(e(*.-6)),,,b- (a )vPo9t_ (e1(16-‘ ))ba) 

Time reversal sends t -t but pa -> pa. Let us suppose it also send q„ (jk,. Then we have under time reversal 

Oa —) —Oa = (( 12 )q PA- V ia-ea )ab (Pa )v Ptif Cfritered))129) 
Pb Pa 

(16) 

(171 

(IS) 

(19) 

We have time reversal invariance if this returns the same equation for fia. Recalling the positivity of Itjettrat - eat))ab this can 
only be solved if q = 3 and 4k, = —4.a. We also have to impose 

(20) 

We have then 

Au =;:Wn et(e4"b )Lb — R.(e*-41/4))ba) (21) 

Insisting on time reversal invariance of P in (13) then implies that 

(z)mb = •11(2)01p (22) 

However the power r is not fixed by time reversal invariance. 

HI. RECOVERY OF THE SCHROEDINGER EQUATION 

Let us summarize where we are as a result of our ansatz's plus the imposition of a good large N limit and time reversal 
invariance. We have two evolution equations 

pa = Z(P0Fal, PbFba) 

= 1.%)/ b(gt.(eA(41-416))tin 9(.4•44.14-4‘1))ba) 

= Loa + Z ( n°) ti(e",-.6)),„b 
nb 

where ok, = Va. and Rafr and 'lid, satisfy the properties above. 
We can now expand & I, and thd, in Fourier series. 

(23) 

(24) 

R.(e1(‘ -ta)ab = RI, s111 .̀(n(4ki + 0:1,b) (25) 
?MG 
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CO 

u (eOrt)),,b = I  Cbcos0(4). — (kb) + eat) 
n=a 

To preserve the positivity of Fat, and hence t,b,  we have 

sin+(0) = 
sin(0) when that is positive 

0 otherwise 

(26) 

(27) 

It is remarkable that just the first term with the further simplifications Rail, = fealb and &alb = bob suffices to reproduce quantum 
mechanics. 

1(..(144°—+a)ab = Rub sin+ (Oa — +a+ bah) 

V (el*  -3/4 ))0b = RabCOS(ta — + bob) 

where, Rai, = Rb,, are positive constants. bat are constant phases which are odd under time reverse and, 
This gives us evolution rules 

= ‘riPbRab sin(4). — +fr + kb) 

+a = wo+71  Rabcos(fa — +6 ± kb) 
(nn 

It is easy to check that with the choice of r = —₹ this reproduces Schroedinger quantum mechanics. To see this we write the 
general quantum state. 

fi le .301

Pp >= Vrs2e—df 

A fe- dmf" 

which clearly is a property of the ensemble and not of an individual physical system. Here we have defined 

Sa = (33) 

Equations (30) and (31) and hence the evolution rules we posited are then equivalent to evolution via the Schroedinger 
equation, 

(32) 

driven by the hemtition Hamiltonian 

here we have set 

dqi 
rh = Aqr 

di 

To 612 
= (AT2 

(34) 

(35) 

aab = &beak (36) 

The final form of our evolution rules is 

P(Icopyi) = 

A. Final form of the evolution rules 

ivtWi Ram, sin+(@r— + 60,6,)+ ELI (37) 

40/ = Of = Wa,  Ram COS($r — ell 
f#r“Thrti 

bah) + 2fr br (38) 

It must be emphasized that we have derived a correspondence to quantum mechanics only with the proviso that no > > I and 
nr > > 1. When these are not satisfied other terms could come into the evolution rules. I have added terms it/ and Du to indicate 
these. 
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IV. A POSSIBLE APPROACH TO PHASE ALIGNMENT 

The elimination of S(x,t) as a function of beable variables, and hence as an ontological entity in its own right, rests on the 
postulation of a dynamics which achieves phase alignment. This means that the phases. tly originally assigned independently to 
each member of the ensemble, become aligned so they depend only on the value of the beable. le 

10/ Sal • (39) 

As we have shown, phase alignment is a fixed point of the dynamics we have postulated in (37,38). But is it an attractor? 
My investigations of this question have so far been inconclusive. But this is not the only option. It may be that the evolution 
described in (38) is an approximation to another dynamical law which achieves phase alignment. We now describe a possible 
model for such dynamics. We shall see that it is easy to show that this model has solutions which achieve phase alignment, but 
there remains an open question as to the stability of these solutions. 

Consider the following dynamical system. put in Hamiltonian first order form for simplicity. 

11 / 2 S= f dr; [19 + — (2/(4), n)) — —
2 
(n- ) — — V sin2(4/ — 4(;)] (40) 

2 frea, 

where the model depends on a new paranater, the frequency j. Q, is defined by eq (38), and the notation J E al means the 
subsystem J shares the beable value with I. 

We find the momenta are given by 

which satisfy the Poisson brackets 

with the Hamiltonian 

nr = Of($, n) (41) 

{4,/ ,71j} = (42) 

I / / 
f 2 

H = i; [ (Ir )2 + n-QiWn)+ 
2 

sin2(4r - 4r) (43) 
cri 

The Hamilton equations of motion follow from the Poisson brackets and include (41) and 

= —.J2 sin(4r — $2) cos(ipi — _ p in °ilk (4'. n) 
ativ (44) 

Let us take f very large compared to w and the components of Rat, and consider this evolution in the approximation where the 
second term can be neglected. Then we can approximate (44) for small phase differences as 

= —.1.2nr* + 

where 

is the average value of the phases in the subencernble that shares the value of the beable with system 1. The Hamiltonian in this 
approximation is 

H 
=

(9)2 + cm* - ()ad 

In this approximation Si is driven to the minimum of the potential where 

= oaf 

(47) 

(4g) 

so the phases align to their average values for each value of the beable. Once there we have from (44) the full equations of 
motion. 

= ; *Ar arbc(4),n) (49) 
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rci = itr =0 (50) 

=i2i(Cn) (51) 

which recovers (38), and hence the Schroedinger equation is satisfied. Hence our model has a degenerate set of zero energy 
solutions which achieves both phase alignment (48) and the Schroedinger dynamics. What we are not, however, able to show is 
that the solutions (485051) are stable. 

We can get a bit more insight by solving the action (40) for of and writing it in terms of complex variables zi = ?Pi which 
satisfy 42../ = 1 

A solution to this is 

This implies 

S = f dit [ i (41-1,20,n))2 — 
/2 

7. sin2 Op/ — 
2. &fa 

= f dr V [-I (t; 
to 2 

g."1/(Z,n)z; .1.2 - irlAzinkt)- - V sin2
2 fr o 0€,

— 40.0] (52) 

This shows that the Wallstrom objection(10) is not relevent here, because the theory depends on the phase 2/ = en rather than 
on (Or directly; . 

Finally, we can note that when phase alignment is satisfied, the whole system becomes a lagrangian system, with an action 
principle given by 

S = ME (Pa(sia Wa) 1 d/T457,Rabcos(0.-44,+ bah)) 
9i a 

This suggests that the pa and qta are conjugate quantities in the phase of the more general theory in which phase alignment is 
satisfied. 

V. THE CLASSICAL LIMIT 

(53) 

Once the conditions are met which are required to derive quantum mechanics, one can continue from there and consider 
the effect of taking h 0. This should allow us to recover classical mechanics as a limit of quantum mechanics, in the usual 
way. But notice that the same conditions we require to get quantum mechanics, which are large numbers of copies and large 
occupation numbers, are needed to recover classical mechanics through this route. This raises the question of whether the theory 
described here can account for the fact that large macroscopic bodies obey classical dynamics, when we assert that they do not 
obey quantum mechanics. Can we still derive the classical dynamics of large bodies, while still respecting the distinction that 
the exact quantum states of macroscopic bodies will often be unique? The following argument shows that it can. 

To show this we can start from the action principle (53). Let us consider a simple model of the translational degrees of freedom 
of the atoms in a body in one dimension, given by a one dimensional array of sites, with periodic boundary conditions, with 
a = I,...P labeling the sites. Let us multiply (53) by h to define an action S. We also can define the energy Ea = hwa, and 
the Hamilton-Jacobi function Sa = MN. We want to construct a coarse grained model of a macroscopic body so we choose the 
transition rates to give nearest neighbor interactions, defined with lattice spacing a, 

27702 

h
Rea  (bag,  f. I + 606- I) 

We define the potential energy to be 

h2 
V (a). 4+ ma2

3 Thanks to Antony Valcntini for suggesting this was the case. 

(54) 

(55) 
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The action (53) then becomes 

S= di 2 pa (t+ 21 (a,3)2 _ v(a) _ ve+ o(a)) (56) 

where the quantum potential is 

h2 
— 

V2 Vrt 
(57) 72 ,

Neglecting the quantum potential or, equivalently, taking li —* 0, we have the following equations of motion 

= —max(Pa.$) (58) 

S = — —n(axS)2 + V(a) (59) 

We recognize (58) as the conservation of probability, with current velocity v = la,s, and (59) as the Hamilton-Jacobi equation. 
Thus. we recover an ensemble of classical systems obeying the Hamilton-Jacobi equation. 

Note that if classical mechanics is construed to be an approximation to quantum dynamics. and the latter is a probabilistic 
theory of real ensembles, then so must be the former. That is why we derive classical mechanics in the form of an ensemble of 
systems whose probabilities evolve in a way that is driven by the Hamilton-Jacobi equation. 

There appears to be a puzzle here. It seems that an ensemble is required to derive classical mechanics as an approximation to 
the copy dynamics proscribed by (3738). But we have argued that macroscopic bodies have distinct quantum states. And yet. 
the derivation of classical dynamics depends on the beable occupation numbers being large. That is a consequence of the fact 
that we derived classical mechanics as an approximation to quantum mechanics, and therefor require the same conditions for its 
validity. Is there a contradiction here? 

The resolution of this apparent puzzle is that we can derive the classical description of motion from a model, which is a coarse 
grained description of the microscopic beables. Because beables really exist, there can be an exact or fine grained description 
in terms of beables that is unique and, at the same time, an equally valid coarse grained beables description in which the beable 
occupation numbers are large. We can use the latter approximation to study the coarse grained motion of the atoms in the body. 
All we have to do is show that beables representing the coarse grained translational states of individual atoms in a macroscopic 
body satisfy Newton's laws. It then follows that the centre of mass does as well. To accomplish this all we need is that the atoms 
can be described in terms of beables in such a way that they are in ensembles with large occupation numbers. To do this, we can 
employ coarse grained beables, which is the occupation numbers of boxes which are large in units of the atomic spacing. 

But if we choose the coarse graining sufficiently coarse so that there are many atoms of the body in each box, we are in the 
domain of large occupation numbers, just from the atoms contained in that macroscopic body. We can then use the ensemble 
which is at hand, which is that consisting of the atoms in the body itself. That means that the copy dynamics can work within the 
atoms of the body, when we restrict attention to the beables that represent a coarse grained measure of translational motion. To 
do this we consider the above to be a coarse grained model of an ensemble of atoms making up a body and we take the classical 
limit for the motion of each atom. 

There may be larger ensembles that our atoms arc a part of, but all that is needed for our purposes is that there be at least one. 
So long as there is an ensemble in which the occupation numbers are large we will derive quantum mechanics, whether that is a 
subensemble of a larger ensemble or not. 

While we have to choose a so the occupation numbers, na arc large. the validity of the semiclassical approximation requires 
also that the wavelengths are long, so we can neglect terms of order h, particularly the quantum potential. Hence, we choose the 
lattice spacing so that 

na » I. h-' aaxs « (60) 

In this approximation, p describes the ensemble of particles that make up the body, each of which propagates classically. Thus. 
the centre of mass of the body also behaves classically. So, under this set of assumptions, we have recovered the fact that the 
centre of mass of large bodies made of many atoms propagates according to classical dynamics. 

What we did is completely consistent with the principles this approach to quantum mechanics is based on, both in the use of 
beables and the insistence that all ensembles we invoke are physically real. But there is a a deeper level of explanation missing, 
which would be something analogous to a renormalization group calculation that connects the two levels of description. More 
ambitiously, if we knew more about the fundamental theory, which we assert quantum mechanics is an approximation to for 
small subsystems of the universe, we might be able to both understand the dynamics of unique systems in the universe and 
justify the derivation of the copy rule when applied to coarse grained descriptions of their I:cables. What we can say at this stage 
is that the use of coarse grained models like this is ubiquitous in condensed matter physics and experience shows such models 
usually succeed when they capture the coarse grained properties of interest in an experiment. 
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VI. ISSUES THAT REQUIRE MORE INVESTIGATION 

We have seen that the hypotheses introduced here have a simple realization which reproduces quantum mechanics. Nonethe-
less, as with any novel idea, there are issues which will require more thought. 

• What exactly defines the ensemble that corresponds to the quantum state? We need it to correspond to the ensemble of 
systems made from the same constituents, subject to the same forces, that also share the same pure quantum state. Is there 
a precise characterization of these ensembles that does not refer to the concept of quantum state? Does it suffice to say 
that these systems have the same constituents, preparation and environment? 

Such a characterization of the ensembles only makes sense in a context in which quantum mechanics is asserted to be 
an approximation to a different cosmological theory. The use of macrosystems to initialize and define preparations of 
microsystems as a primitive notion has in common with Bohrs viewpoint that quantum physics requires a distinction 
between micro and macro systems. This demands that there be some more fundamental theory that quantum theory 
approximates for small subsystems of a universe. 

• A related issue concerns the relationship between different coarse grainings of the beables used to provide the ensembles 
from which a quantum theory may be derived. As we have seen in the discussion of the classical limit, a system such as 
a macroscopic body whose fine grained description is unique may be coarse grained to yield an ensemble. The copy rule 
can be applied to different coarse grained models of the same system yielding different quantum mechanical models. This 
need not be a conceptual problem, so long as we take the view that quantum mechanics is always an approximation to a 
deeper theory. This accords with much of the practice of quantum field theory and statistical physics, which is to regard 
all the theories in common use as effective theories which are based on some degree of coarse graining of the degrees of 
freedom. Because nothing on the derivation of the Schrodinger equation depends on the size of the ensemble, apart from 
the requirement that all the beable occupation numbers are large, different models, based on different coarse grainings, 
will lead to different quantum mechanical descriptions, which are presumably related themselves by coarse paining. But 
there are two very interesting questions for further investigation here. First, can we work out the precise relationship 
between coarse graining the dynamics described here and coarse graining the quantum dynamics? Second, could there be 
real observable effects coming from corrections to quantum physics that will depend on the size of the ensemble? 

• What about composite systems? Equally important, how are hierarchies of composite systems to be treated? A quark is 
part of a quantum system which is a proton, it is also part of a nucleus, an atom, a molecule, a quantum gate. There are 
ensembles connected with each of these. Are the beables associated only with the highest level of the hierarchy that is still 
quantum mechanical, or can a single beable evolve with respect to several systems it is a part of? 

This issue is also crucial for understanding if this proposal can resolve classic issues in quantum theory such as entangle-
ment and Wigncr's friend. 

• Does the ensemble require a preferred simultaneity to define it? We could embrace this, in common also with deBroglie-
Bohm and assert that the world of beables is one with a preferred notion of simultaneity. Or we could explore the possibility 
that the ensemble is defined relativistially, for example to refer to all identically constituted and prepared systems in the 
whole spacetime. Recent research in general relativity has revealed that there is a preferred notion of simultaneity that 
may play a key role in simplifying the dynamics of the theoryl6l. 

• What picks the beables? Do the beables change when the system is put through a different filter? Or is there a single 
preferred basis, ie momentum space? 

• How is the connection between linear operators and observables non-diagonal in the beables established? Presumably as 
in dBB probabilities computed in a single basis suffice but it would be good to clarify this. 

• The mechanism of phase alignment just discussed is ad hoc and can probably be improved on. In particular. the question 
of the stability of the solution that leads to phase alignment and Schroedinger dynamics must be investigated. 

• The nodes issue. This is the most serious problem of this list. Recall that we required for the recovery of quantum 
mechanics that all na >> 0. This fails at nodes of wavefunctions, which is for a such that p(a) = na = 0. It is easy to 
see that the correspondence between the rules we so far posited and quantum mechanics also breaks down when there are 
such beables. 

For suppose in the initial state defined by the preparation na(i = 0) = 0 for some a = ao. Then it follows that no(r) = 0 for 
all time. for there is nothing to copy. Indeed: 

= DronoPos — aorroFoo) = r.s, nbRansin(4)a — +bob) = (61) 
Pa 
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To get more insight into this situation, we should look at the second time derivative 

= E'n„Robsin(4.— th + bob) 
na 

= ZZ 
Ea 

IVC,n,- &h&c. sin(pa — + bob) sin(4),, + bob) + 
n 

= 7 7 „-4b + 6,")sin(0,, + bob) 
670,70 

(62) 

Notice that in the passage from the second to the third line we multiply and divide by na. = 0. The conclusion is then 
incorrect. 

There are two kinds of responses we can make to this issue. 

We assumed all ni and n, were large in arguing for the form that led to quantum theory. If this viewpoint is correct that 
quantum dynamics fails for systems that are in states that are unique in the universe. As we indicated above, there could 
be other terms that come in. 

Nonetheless the problem is easy to address also within the current rules. All that is required is either I) require that the 
basis chosen for the beables is such that no no = 0 or 2) add to the universe a small number of spectator states in each 
possible a so that no n, = 0. 3) Insist on a tiny admixture to every state of a state with all no non-vanishing such as the 
ground state. 

• Might deviations from quantum mechanics be observable? To test this idea we would like to predict phenomena which 
do not occur in conventional quantum mechanics. The nodes issue is a sign that there must be such phenomena. When a 
quantum system is large and complex enough that it has accessible states which are likely to have small occupation num-
bers in the universe. deviations from quantum mechanics can be expected. We note that it is likely that these violate signal 
locality, as has been shown to be necessary with a large class of non-local hidden variables theories out of equilibriumI71. 
It would be interesting to determine if indeed the possibility of faster than light signalling exists in this formulation of 
quantum mechanics for cases where quantum dynamics breaks down. 

• Is the mixing given by the copy rule (37) fast enough to account for observations? Might there be an observable process 
of relaxation of a single systems outcomes to the ensemble relative frequency and hence to the quantum mechanical 
probability distributions? 

• What theory is quantum mechanics an approximation to? The first assumption of this approach is that quantum mechanics 
is an approximation to a different, cosmological theory, applicable only for small subsystems that come in many copies. 
We then can aspire to discover the principles that this novel theory is based on. A first goal will be search for principles 
which could characterize such a theory that might be testible in experiments where quantum mechanics is expected to fail 
because the requirement that occupation numbers be large breaks down. 

VII. CONCLUSIONS 

Here we have proposed a new interpretation of quantum mechanics based on a new concept of the distinction between a 
microscopic and macroscopic systems. The distinction is that microscopic systems are those that come in vast numbers of 
copies in the universe, while macroscopic systems are big and complex enough that they are unique. Only microscopic systems 
can satisfy the laws of quantum mechanics, because those laws are consequences of the copy dynamics, and these don't act when 
there are no systems to copy. 

Hence, this proposal addresses the question as to why macroscopic systems do not have quantum properties. It is simply that 
if a system is sufficiently composite it has so many possible states that it has no copies within the universe. It is a member of 
an ensemble of one. It is simply a fact that there are a vast number of hydrogen atoms in each of the low lying states within the 
Hubble scale. But there is only one you, and only one system identical quantum mechanically to your cat Emily. This implies 
that quantum mechanics must be an approximation to a cosmological theory which is formulated in different terms. 

As a result of its limited domain of applicability, the proposal we have made here may have striking consequences for experi-
ment, for it proposes a new regime where quantum dynamics should fail or receive corrections. Quantum dynamics should fail 
both for systems that have no copies in the universe and for systems in states that are unique in the universe. This leads us to ask 
whether it is possible to use the technology of quantum computation to produce a device that can be put into unique, coherent 
quantum states, unlikely to exist anywhere else? 
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Similarly, we should expect that the dynamics of systems near nodes may be revealing of the underlying dynamics which 
replaces quantum theory for individual systems. 

More generally, the new distinction we have introduced between microscopic and macroscopic suggests an exploration for a 
new regime of mesosccopic physics: those systems which are likely to come in a small numbers of copies in the universe. The 
study of such systems should reveal evidence for the underlying laws that quantum mechanics approximates. 

This proposal also implicitly addresses speculation by some theoretical cosmologists that the universe comes in an infinite 
number of copies which contain many exact and inexact copies of the Earth and each one of usil 1 Within the present proposal. 
the fact that macroscopic bodies do not appear to satisfy the superposition principle can be taken as evidence that the universe 
is finite so that we and other macroscopic bodies have no copies. On the other hand, testing the limits of the applicability of 
quantum mechanics to mesoscopic systems like quantum circuits may make it possible to do local measurements which could 
determine whether thcrc arc any copies of them in the universe. 

A number of queries and issues can be raised concerning this proposal, some of which were discussed above. These need to 
be better understood before the proposal made here can be considered to be in final form. 
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