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Abstract

Brain—computer interface {BCI) systems are allowing humans and non-human primates to
drive prosthetic devices such as computer cursors and artificial arms with just their thoughts.
Invasive BCI systems acquire neural signals with intracranial or subdural electrodes, while
nominvasive BCI systems typically acquire neural signals with scalp electroencephalography
(EEG). Some drawbacks of invasive BCI systems are the inherent nisks of surgery and gradual
degradation of signal integrity. A limitation of noninvasive BCI systems for two-dimensional
control of a cursor, in particular those based on sensorimotor rhythms, is the lengthy training
time required by users to achieve satisfactory performance. Here we describe a novel approach
to continuously decoding imagined movements from EEG signals in a BCI experiment with
reduced training time. We demonstrate that, using our noninvasive BCI system and
observational leamning, subjects were able to accomplish two-dimensional control of a cursor
with performance levels comparable to those of invasive BCI systems. Compared to other
studies of noninvasive BCI systems, training time was substantially reduced, requiring only a
single session of decoder calibration {(~20) min) and subject practice (~20 min). In addition,
we used standardized low-resolution brain electromagnetic tomography to reveal that the
neural sources that encoded observed cursor movement may implicate a human mirror neuron
system. These findings offer the potential o continuously control complex devices such as
robotic arms with one’s mind without lengthy training or surgery.

Online supplementary data available from stacks jopoorg/ JNESOEG0 10/ mmedia

iSome figures in this article are in colour only in the electronic version)

1. Introduction

and smart artificial arms. Currently the most promising
BCI systems rely on neural signals acquired noninvasively

Brain—computer interface (BCI) systems may potentially
provide movement-impaired persons with the ability 1w
interact with their environment using only their thoughts o
control assistive devices such as communication programs

* Present address: Metron, Inc., Reston, Virginia 20090, USA_
* Anihor to whom any correspondence should be addressed.
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with electroencephalography (EEG) (Wolpaw and McFarland
20414) or invasively with electrocorticography (ECoG) (Schalk
et al 2005} or microelectrode arrays seated into cortical tissue
(Hochberg er al 20100,

Current noninvasive EEG-based BCI systems for 2D
cursor control require subjects to learn how to modulate
specific frequency bands of neural activity, i.e. sensorimotor
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rhythms, to move a cursor (o acquire targets {Wolpaw
and McFarland 2004).  These types of studies based on
sensorimotor thythms require weeks 10 months of training
before satisfactory levels of performance are attained. Relative
to EEG signals, the increased signal-lo-noise ratio and
bandwidih of invasively acquired nevral data are commonly
thought to be faciors that reduce the raining time required by
users of invasive BCL systems (Schalk eraf 2005). In addition,
studies of tetraplegic humans with implanied microelecirode
arrays have exclusively demonstrated 2D control of a cursor
through imagined natwral movement (Hochberg ef al 2006,
Kim eral 20015), This decoding of imagined natural movernent
is also a likely factor in reduced training time since neural
signals directly correlate with intended actions.

However, recently several off<line decoding studies
have demonstrated the reconstruction of cursor and
hand kinematics from noninvasive magnetoencephalography
IMEG) (Bradberry er al 2009) and EEG ( Bradberry er al 201100).
The noise and bandwidth limitations of the noninvasively
acquired signals did not impede decoding kinematics of
natural movement., This finding implies that a noninvasive
BCI system based on the decoding method reported in those
studies may require little training time,

In this study, we sought to investigate the use of the
decoding method reported in those off-line studies in an EEG-
based BCI system during a single session lasting less than
2 h that required only brief training. We hypothesized that the
putative human mirror neuron system (MNS), which predicts
and interprets one’s own actions and the actions of others
(Tkach er al 2008), could be exploited during training by
asking subjects to combine motor imagery with observation
of a video of cursor movement. In fact, several of the
aforementioned invasive studies (Hochberg er al 2006, Kim
et al 2008) suecessfully demonstrated a similar approach
to training. We further hypothesized that a neural decoder
could subsequently be built off-line that would predict cursor
movement from neural activity, and the decoder could then be
used on-line for real-time brain-control of cursor movement
with little training time. Furthermore, to provide additional
validation of our hypotheses, we sought to examine the
involvement of neural regions in encoding cursor veloeity
during observation of the cursor movement and during tasks
requiring a brain-controlled cursor to acquire targets in 2D
space,

2. Materials and methods

2.1, Experimental tasks

The Institutional Review Board of the University of Maryland
at College Park approved the experimental procedure. Aller
giving informed consent, five healthy, right-handed, male
subjects performed a three-phase task: calibration, practice
and target acquisition. None of the subjects had previously
participated in a BCI study. In all phases, their EEG signals
were acquired while they sat upright in a chair with hands
resting in their laps at arm’s length away from a computer
monitor that displayed a workspace of dimensions 30 cm =

T J Bradberry et al

Figure 1. Setup of EEG-based BCI expenment. Subjects’ EEG
signals were acquired while sitting in a chair facing a monitor that
displayed a cursor and targets (only target acquisition phase).
During the calibration phase, subjects observed a computer-
controlled cursor to collect data for subsequent initialization of the
decoder. In the target acquisition phase (shown in the photo),
subjects moved the brain-controlled cursor o acquire targets that
appearcd at the lefi, top, right, or boltom of the compuler screen.
(for a more detailed schematic, see figure 51 in the supplementary
data, available at =1 fopore/ INEMSD3G0 1O mmedin )

30 em and a cursor of diameter 1.5 em (0.20% of workspace)
(figure 1), Subjects were instructed to remain sill and relax
their muscles w reduce the intreduction of artifacts into the
EEG recordings.

211, Calibration phase.  During the calibration phase,
subjects were instructed o imagine moving their right
arm/finger to track a computer-controlled cursor that moved
in two dimensions on the computer screen. The movements of
the computer-controlled cursor were generated by replaying
a 10 min recording of a pilot subject’s brain-controlled
cursor movements from one of his practice runs (this piloi
subject did not participate as one of the five subjects in
this study).  Histograms of the horizontal and wvertical
positions and velocities of the computer-controlled movements
indicated approximately uniform coverage of the workspace
and biclogical motion respectively (figure 2). The decoding
procedure described in section 2.0 below was subsequently
executed (=10 min of computation time) to calibrate the
decoder so that it best mapped the EEG signals to observed
horizontal and vertical cursor velocities. During pilot testing,
we discovered that asking subjects to visually fixate the center
of the workspace while simultaneously tracking the cursor
added attentional demands that burdened the subjects and
likely compromised the decoding; therefore, we told subjects
they were free 1o move their eves bul to always maintain eye
contact and spatial attention with the moving cursor.

2.1.2.  Practice phase. During the practice phase, the
subjects used the calibrated decoder to attempt to move
the cursor with their thoughts in two dimensions as desired
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Figure 2. Histograms of ohserved cursor kinematics during the calibration phase, (A) Histograms of horizontal (left) and vertical (right)

positions indicated approximately uniform coverage of the workspace.

{B) Histograms of horizontal (left) and vertical {right) positions

inferred movements with bell-shaped velocity profiles (although these are more super-Gaussian than typical point-to-point movements),
indicative of biological motion. The velocity histograms actually peak near 5000 but were truncated so the shape of the base could be

viewed,

{without task constraints). They were instructed to determine
for themselves how to best control the cursor by exploring the
workspace. They were also informed as to where the target
locations would be in the target acquisition phase that would
follow. Again, they were free o move their eyes. During the
initial portion of the practice phase. horizontal and vertical
gains were independently adjusted by the investigators o
balance cursor speed and o ensure full coverage of the display
workspace by the brain-controlled cursor, After the gains were
manually adjusted (=10 min), subjects practiced moving the
cursor without task constraints for 10 min.

203, Tareetacguisition phase,  During the target acquisition
phase, subjects were instructed to use their thoughts 1o move
the cursor in two dimensions to reach a peripheral targer (1.3%
of workspace) that would appear pseudorandomly at the top,
bottom, left, or right side of the computer screen. They were
informed that if they did not acquire the target within 15 s, a
new targel would appear, and the trial was considered a failure.
Four 10 min runs of target acquisition were performed with a
rest interval of 1 min between runs.

2.2, Daia acqguisition

A 6d-sensor Electro-Cap was placed on the head according
o the extended International 1020 system with ear-linked
reference and used to collect 58 channels of EEG activity.
Continuous EEG signals were sampled at 100 Hz and amplified
1000 times via a Synamps [ acquisition system and Neuroscan
v4.3 software. Additionally, the EEG signals were bhand-
pass filtered from 001 to 30 Hz.  Electroocular (EOQG)

activity was measured with a bipolar sensor moentage with
sensors attached superior and inferior to the orbital fossa of
the right eye for vertical eye movements and to the external
canthi for horizontal eve movements. The EEG signals were
continuously sent to the BCI2000 software system {Schalk
er gl 200 for online processing and siorage,  BCI2000
was responsible for moving the cursor based on our decoder
function, which we integrated into the open source soltware
system.,  BCI2000 was also responsible for storing cursor
movement data as well as collecting markers of workspace
events such as target acquisition.  Electromyographic (EMG)
signals were amplified and collected at 2000 Hz from two
bipolar surface electrodes over the flexor carpi radialis and
extensor digitorum muscles of the right forearm using an
Aurion ZeroWire system ( 10-1000 Hz bandwidth, constant
electrode gain of 10000,

2.3, Decoding method

The decoding method emploved in this study has been
previously described (Bradberry er af 20101 so will only
briefly be described here. First, a fourth-order, low-pass
Bunterworth filter with a cutoff frequency of | Hz was applied
to the kinematic and EEG data. Very low frequencies have
previously been shown 1o possess kKinematic information (Jerbi
efal 2007, Waldert ef al 200035, Bradberry et al 2009), including
those from low-pass filtered electrocorticographic signals (the
lecal motor potential, LMPY (Schalk er af 20007), Next, the
first-order temporal difference of the EEG data was computed.
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To continuously decode cursor velocity from the EEG signals,
a linear decoding mode] was employed:

N L
JC[F]—.I:'[.I‘—|]=H_r+ZZ!'J'.qhsu[f—H (n
n=1 k=l
N L
V=l =1=a,+) Y buSalt =kl (2)
=1 k=0

where x [f]—x[t — 1] and y [#] = ¥[t — 1] are the horizontal and
vertical veloeities of the cursor at time sample r respectively,
N is the number of EEG sensors, L (=11) is the number of
time lags, 8, [r —&] is the temporal difference in voliage
measured at EEG sensor n al time lag &, and the @ and £
variables are the weights obtained through multiple linear
regression. Only the most important sensors (& = 34) for
velocity reconstruction found in a previous study {Bradberry
et al 20011, which excluded the three most frontal sensors,
were used for decoding.

For the calibration phase, a (10 = 1(-fold
cross-validation procedure was employved to assess the
reconstruction accuracy of observed cursor velocity from EEG
signals. In this procedure, the entire continuous data were
divided into 10 paris; 9 parts were used for training, and the
remaining part was used for testing. The cross-validation
procedure was considered complete when each of the ten
combinations of training and testing data were exhausted,
and the mean Pearson correlation coefficient (r) between
measured and reconstructed Kinematics was computed across
folds. Prior to computing r, the Kinemaltic signals were
smoothed with a fourth-order, low-pass Butterworth filter with
a cutoff frequency of 1 Hz, For the ensuing practice and target
acquisition phases, the regression weights (a and b variables)
for the cross-validation fold with the highest r were used for
online decoding.

2.4, Sealp maps of sensor contributions

To graphically assess the relative contributions of scalp regions
to the reconstruction of cursor velocity, the decoding procedure
described in the section above was run on standardized EEG
signals. and the across-subject mean of the magnitude of the
best b vectors (from equations (1) and (2)) was projected
onto a time series (—110-0 ms in increments of 10 ms) of
scalp maps. These spatial renderings of sensor contributions
were produced by the topoplot function of EEGLAR (Delonme
and Makeig 2004), an open-source MATLAB twolbox for
electrophysiological data processing that performs biharmonic
splineg interpolation (Sandwell [957) of the sensor values
before ploiting them.  To examine which time lags were
the most important for decoding, for each scalp map, the
percentage of reconstruction contribution was defined as

M . 5
Z '{?Il.-l.l ¢ b.l-lll W

GT) = 100% x .\;I=|} (3)
E E ‘fllbi.kr +bﬁh
n=1 k=

for all ¢ from O to L, where %71, is the percentage of
reconstruction contribution for g scalp map at time lag i.

T J Bradberry et al
2.5, Sowrce extimarion with sLORETA

To betier estimate the sources of cursor velocily encoding,
we used standardized low-resolution brain electiromagnetic
tomography (sLORETA} (Pascual-Marqui 2002} soltware
version 20081104, Preprocessed (low-pass filtered and
differenced) EEG signals from all 34 channels for each subject
were fed o sLORETA to estimate current sources. First, r
values were compuied between the squared time series of each
of the 34 sensors with the 6239 time series from the sSLORETA
solution and then averaged across subjects. Second, the mean
of the r values multiplied by the regression weights b (from
equations (| ) and { 7)) of their associated sensors were assigned
to each voxel. The regression weights had been pulled from the
regression solution at the time lag with maximum %T;, which
had the highest percentage of reconstruction contribution.
Third, for visualization purposes, the upper quartile of voxels
(rvalues weighted by b) was set to the value one, and the rest of
the r values were set to zero. Finally these binary-thresholded
r values were plotted onto a surface model of the brain.

2.6. Eve and muscfe activity analysis

To assess the contribution of eye activity o decoding, the
decoding procedure was executed off-line with channels of
standardized vertical and horizontal EOG activity included
with the 34 channels of standardized EEG activity, The
percent contribution of these eye channels was then assessed
by dividing the absolute value of their regression weights by
the sum of the absolute value of all the regression weights,
To assess whether muscle activity inadvertently aided cursor
control, we cross-correlated EMG signals from flexor and
extensor muscles of the right forearm with the x and ¥
components of cursor velocity over 200 positive and negative
lags (=2 s to 2 s in increments of 10 ms). The start of the
EMG and EEG/EOG recordings were not synchronized by
computer, which is why the cross-correlation of the EMG and
EOG signals at different lags was examined as opposed to
only the zero-lag correlation. Prior to the cross-correlation,
the EMG signals were decimated 20 times after applying
a 40 Hz low-pass antialiasing filter; rectified by taking the
absolute value; low-pass filtered with a fourth-order, low-pass
Butterworth filter at | Hz; and first-order differenced.

3. Resulis

A1, Calibrating a nenral decoder from observed cursor
Mavement

BCI systems are ultimately intended for movement-impaired
persons; therefore, it is imperative that calibration of the neural
decoder does not require overt movement. For this reason, we
calibrated our previously developed decoder (Bradberry er al
200010 in a manner similar to that described in an invasive BCI
study (Hochberg et af 2000) that required only motor imagery
during observation of cursor movement. More specifically,
during the calibration phase of our study, subjects imagined
using their finger to track biologically plausible movement of
a computer-controlled cursor for 10 min, and we subsequently

EFTA_R1_02036192
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Figure 3. EEG decoding accuracy of observed cursor velocity during the calibration phase. {A) We computed the mean

ki
Tirnes)

standard error

(SE} of the decoding accuracies (r values) across cross-validation folds (n = 10} for each subject for x (black) and y {while) cursor
velocities. (B) Superimposed reconstructed velocity profiles (red) and actual velocity profiles (black) matched well (data from subject 1).
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Figure 4. Mean biain-controlled cursor paths. Each colored path is the mean of the length-normalized trals for a single direction (left. tofp,
right, or bottom) across all mals of all runs for a subject. Trials in which subjects did not acquire the target within 15 s were excluded from

amalysis,

Table 1. Mean (SE) of the hit rate and median MT for each target of each subject across runs (n = 4).

Left Top Right Botiom Mean (SE)
Hit% MT Hirts MT Hit% MT Hit% MT Hu% MT
Subject |  94(2)  4.24 66 (R)  5.90 9R(2) 462 55(9)  H.BR TR 591 (105
Suhject 2 83 (5) 6.52 O6 (4) 4.40 B54(2) 3.76 25 (4) 4.40 BT (3) 4. 77 (0.60)
Subject 3 2400 424 45 (4) 0.96 100 {09 232 67(9) 682 T4i{12) 583 (1.65)
Subject 4 TL(T7) 3.440 33T 4.88 65 (6) B.16 21 i4) 6.68 47(12)  STE(1.04)
Subject 5 T4y B.56 100 (00 2.72 6018 548 [CH (00 2.0 TA(12) 4690149
Mean (SE) 7R (6) 5.39 ( 1.0G) 6 (13)  557(1.35) BliE) 487 (1.09) 6314y 5.76(01.32) 734} 5400027y

The median MT, instead of the mean (SE) MT, was computed for each direction of cach subject because the MT distributions were skewed,

computed the parameters of the decoder (= 10 min) based on
the cursor velocity and EEG signals,

We quantified the accuracy of each subject’s calibrated
decoder by computing the mean of Pearson’s r between actual
and reconstructed cursor velocities across ten cross-validation
folds (figure 3(A)). The across-subject mean r values for
horizontal (x) and vertical (y) velocities were (L68 and 0.50
respectively, indicating high decoding accuracy. In fact, the
accuracy was roughly double that of studies that decoded
observed cursor movement from neural activity acquired more
focally with intracranial microelectrode arrays (Kim er al
200, Truccolo e af 2008). Reconstructed velocity profiles
also visually matched well with the actual velocity profiles
ifigure 3(B)).

3.2, Applving the newral decoder 1o move a compuier cursor

Adter a subject’s neural decoder was calibrated and a ~20 min
practice phase with the decoder was performed, the subject
moved a cursor with his EEG signals to acquire targets that
appeared one at a time pseudorandomly at the left, top,
right, or bottom of a 2D workspace (see movie 1, available
at stacksioporg/ INESAO3IG0/mmedia). Four 10 min runs
of target acquisition were performed with a rest interval of
| min between runs.  The length-normalized cursor paths
confirmed the subjects’ ability to move from the center to
the target (figure ). For each target of each subject, the target
hit raie and movement time (MT) across runs are given in
table |. The overall means  SE of the hit rate and MT were
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Fignre 5. Neural regions that encoded cursor movement. (A) Scalp sensor contributions to the reconstruction of observed cursor velocity
during the calibration phase. Mean (0 = 5) scalp maps of the sensors revealed a network of frontal. central and parietal involvement. In
particular, sensors F1, FCZ and CPI1-CP4 of the International 10,10 system made the largest contribution. Light and dark colors represent
high and low contributors, respectively, Each scalp map with its percentage contribution is displayved above its associated 100 ms time lag,
revealing the 12.4% maximal contribution of EEG data at 50 ms in the past. (B) Sources that maximally encoded observed cursor velocity
during the calibration phase. We overlaid localized sources (vellow) from 50 ms in the past onto a model of the brain in different
orientations to reveal the involvement of the PrG (1), PoG (2), LPM (3), 8T5 (4), and dorsal and ventral LPC (5). (C) Scalp sensor
contributions to the brain-controlled cursor velocity during the target acquisition phase. Mean (n = 5) scalp maps of the sensors weights
from the subjects’ best runs revealed a network that had shifted o involve more central regions than the network of the calibration phase.
The scalp maps revealed a 12.1% maximal contribution of EEG data at 50 ms in the past. (1) Sources that maximally encoded
brain-controlled cursor velocity during the target acquisition phase, Localized sources (vellow) from 50 ms in the past revealed a substantial
involvement of Pr (1) and PoG (2) and some involvement of LPM (3}, As in the calibration phase, the S5T5 (4) was involved. ln contrast to
the calibration phase, the LPC (3) played a minor role, and the IPL (6) played a major role.

73 4% and 540  0.27 s. The change in hit rate across runs
is presented for each subject in figure 52 in the supplementary
data, available at stacks.jop.org/INI

(ligure 5(A)). Within this network, sensors over the
frontocentral and primary sensorimotor cortices made the
greatest contribution. Concerning time lags, EEG data from
50 ms in the past supplied the most information. In source
space at 50 ms in the past, the precentral gyrus (PrG),
posteentral gyrus (PoG), lateral premotor (LPM) cortex,

R3O0 mmedia,

3.3 Newral regions that encoded cursor movement

To visualize the contributions of scalp regions and current
sources 1o the reconstruction of cursor velocity, the weights of
the decoder were projecied onto scalp maps, and sLORETA
(Pascual-Marqui  2002) was employved.  Scalp maps of
sensor contributions to the reconstruction of observed cursor
movements in the calibration phase depicted the contributions
as a network of frontal, central and parietal regions

superior temporal sulcus (STS), and dorsal and ventral portions
of lateral prefromtal cortex (LPC) played a large role in the
encoding of observed cursor velocity (figure 5(B)).

Sealp maps of sensor contributions to the brain-controlled
cursor velocity were generated from the mean of each subject’s
best run in the targel acquisition phase. They depicted the
contributions as having shifted to be more focused within

EFTA_R1_02036194
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Tahle 2. Percent contribution of EOQG activity to cursor velocity
reconsimction.

Target
acquisition
ibest run)

X ¥ X ¥

Calibration

(.30
(00
1.99
(10K
(.34

1.58
0.0
9,60
0.01
0.65

0.00
0.20
1.54
4.9
.06

.01
018
047
0.04
.03

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5

Table 3. Mean (SD) across subjects of maximum absolute r values
from cross-correlation of forearm lexor and extensor EMG activity
with x and y components of cursor velocity.

Target acquisition
Calhibration (best run)
X ¥ X ¥
Flexor 005(0.04)  005(0.04) 004 {0.02) 007 (0.03)
Extensor  0.03 (0.02) 0040000 007 (0.08) 003 (0.04)

central regions (figure 5(C)). As in the calibration phase, EEG
data from 50 ms in the past supplied the most information. In
source space at 50 ms in the past, compared to the calibration
phase, a large shift occurred from anterior (frontocentral) to
posterior {centroposterior) neural regions. More specifically,
there was much less involvement of the LPC, the PrG and
PoG exhibited an even more widespread involvement, and
the inferior parietal lobule {IPL) made a large contribution
(figure 5(D)).

3.4, Eve and muscle contributions

A concern in BCI studies is that eye or muscle movements
may contaminate EEG signals thereby inadvertently aiding
the control of a device /environment that should be controlled
by thought-generated neural signals alone. To address this
concemn, we executed the off-line decoding procedure with
channels of vertical and horizontal EOG activity included,
and assessed the percent contribution of these eve channels
itable 2). The percent contributions were low for the
calibration and target acquisition phases except for a very
high percent contribution (94.99) to x velocity reconstruction
for subject 4 during target acquisition. Interestingly.
this subject had the lowest decoding accuracy of all
participants, suggesting that eye movements disrupted
decoding.  Furthermore, the fact that hardly any extreme
frontal contribution is observed in the scalp maps and
sLORETA plots (figure 5) is a testament to the non-

muscle activity aided cursor control, we cross-correlated EMG
signals from flexor and extensor muscles of the right forearm
with the x and v components of cursor velocity to find that all
correlations were low (table 3).

T J Bradberry et al

4, Discussion

We  report the  first EEG-based BCI  system that
employs continuous decoding of imagined continuous hand
movements.  Furthermore, we emphasize that the system
requires only a single session of decoder calibration
(=20 min) and subject practice (~20 min) before subjects
can operate it. The off-line decoding results of the calibration
phase that used observation of biologically plausible cursor
movement were higher than those of invasive BCI studies
and may imply, as discussed below, the involvement of a
widespread MNS in humans. In the on-line target acquisition
phase, subjects controlled a cursor with their EEG signals
alone with accuracies comparable to other noninvasive and
invasive BCI studies aimed at 2D cursor control,

4.1, Comparison ro other BCI sindies

Our siudy is the first noninvasive EEG-based BCI siudy 10
employ continuous decoding of imagined natural movement,
Previous work in EEG-based BCI systems for cursor control
required subjects to overcome an initial disconnect between
intended movement and neural activity in order to leamn
how to modulate their sensorimotor rhythms to control the
cursor. These studies based on sensorimotor rhythms required
weeks 10 months of training before levels of performance
were deemed sufficient for reporting (Wolpaw and McFarland
20H14). We believe the fact that we used a decoder based
on imagined/observed natural movement, as opposed to
neurofeedback training of sensorimotor rthythms, reduced the
subject training requirements of our targel acquisition phase
1o only a single briel practice session (~20 min).

An ECoG study based on sensorimotor rhythms that had
objectives similar 1o ours also observed that several subjecis
leamed 1o control a 213 cursor over a short period of time
(Schalk er al 2008).  Although this ECoG study reduced
training time compared to previous EEG swudies (Wolpaw
and McFarland 2004), some drawbacks included that pre-
training time was still taken for the initial selection of control
features and for training subjects to lirst move the cursor in
one dimension at a ime. We were able o bypass these two
pre-training steps. Another drawback of the ECoG study was
that all five subjects used overt movement for initial selection
of features, and two subjects used overt movement throughout
the study.

Additionally, the results of our target acquisition phase
compare favorably o those in tetraplegic humans that were
implanted with intracortical arrays in the arm area of MI
{(Hochberg er af 2000, Kim et af 2008) even though the
performance results of those studies were only computed on
data collected weeks 1o months after training began, Table 4
compares our study to the aforementioned studies,

4.2, Differential encoding of ehserved and brain-controfled
curser velocity

The most notable differences between the regions that encoded
for observed cursor velocity and brain-controlled cursor
velocity were with the PrGG, PoG, IPL and LPC. There was

EFTA_R1_02036195
EFTA02693116



I Mewral Eng. 8 (200 1) 0360140

T J Bradberry et al

Table 4. Comparison to most relevant human BCI studies of 21 cursor control.

Mumber of Target size as%  Timeout  Movement  Target

subjects MNeural data  of workspace (s} tme (s} it
Wolpaw and McFarland 2004 4 EEG 4.9 103 1.9 92
Hochberg et al 2006 1 Single units NA 7 2.5 85
Kim er al 20015 2 Single units 1.7 7 kN | 75
Schalk er al 2004 5 ECol 7 16.8 24 63
Present study 5 EEG 1.3 15 54 73

a more widespread contribution from the PrG, PoG and
IPL during brain control, which could reflect the increased
involvement of imagined motor execution (Miller er al 200111
especially since these regions have previously been shown
to be engaged in encoding cursor kinematics (Bradberry
et al 2004, Jerbi er @l 2007).  The contribution from the
LPC was largely attenuated during brain-controlled cursor
movements, suggesting a transition out of the imitative
learning environment of cursor observation (Vogt eral 2007).

4.3, Implications for a human mirvor neuron system

The training by cursor observation in the decoder calibration
phase may have engaged the putative human MNS. which
predicts and interprets one’s own actions and the actions
of others (Tkach et af 2005).  In fact, neuronal activity
acquired from intracortical microelectrode arrays implanted in
the dorsal premotor cortex (PMd) and the arm area of the PrG
iprimary motor cortex, M1), common sites for BCl-related
studies. exhibits qualities of mirror neurons during observation
of cursor movements (Cisek and Kalaska 2004, Wahnoun
et al 20006, Tkach et al 2007).

Current electrophysiclogical correlates of the putative
human MNS, as acquired through EEG, are based on
modulation of the mu rhythm (8-13 Hz), which exhibits
suppression during action observation and action performance
{Perry and Bentin 2009), These EEG correlates at the scalp
level with high temporal resolution have been reported to be
similar to those revealed by neural hemodynamics with high
spatial resolution acquired with functional magnetic imaging
(fMRLD) (Perry and Bentin 2009). Since our examination of
cortical sources that encoded observed cursor velocity revealed
some regions commonly held to comprise the canonical human
MMNS (ventral LPM., 5TS. and LPC) (lacoboni and Dapretto
2006 ) and regions reportedly containing mirror neurons related
to the task (PMd, MI1) (Cisek and Kalaska 2004, Wahnoun
ei al 2000, Tkach et al 2007), our method appears to
provide detaled temporal and spatial information about the
internal representations of both observed and executed actions,
which is not provided by the study of mu rhythm dynamics
or hemodynamics alone.  Our method provides further
spatiotemporal evidence that the MNS 15 involved during
ohserved cursor movement by indicating the presence of
planning activity that peaks at 50 ms in the past, excluding the
decoding of passive viewing as an explanation and suggesting
predictive decoding informed by forward models ( Miall 2003).

5. Conclusion

In the near future, it will be important for whole-arm ampulees
and persons with impaired upper limb movement (e.g., spinal
cord injury or stroke) to test our noninvasive BCI system since
they are the target population for this assistive technology.
Since our findings indicate that calibration of our decoder
and initial practice by subjects require a short amount of time
in a single session, we expect o avoid burdening patients
with lengthy training. Employing our method will also permit
future investigations into the putative human MNS, potentially
providing further insights into training protocols for BCI
systems,
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