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Abstract 
Brain-computer interface (BCI) systems are allowing humans and non-human primates to 
drive prosthetic devices such as computer cursors and artificial arms with just their thoughts. 
Invasive BCI systems acquire neural signals with intracranial or subdural electrodes, while 
noninvasive BO systems typically acquire neural signals with scalp electroencephalography 
(EEG). Some drawbacks of invasive BCI systems are the inherent risks of surgery and gradual 
degradation of signal integrity. A limitation of noninvasive BCI systems for two-dimensional 
control of a cursor, in particular those based on sensorimotor rhythms. is the lengthy training 
time required by users to achieve satisfactory performance. Here we describe a novel approach 
to continuously decoding imagined movements from EEG signals in a BCI experiment with 
reduced training time. We demonstrate that, using our noninvasive BCI system and 
observational learning, subjects were able to accomplish two-dimensional control of a cursor 
with performance levels comparable to those of invasive BCI systems. Compared to other 
studies of noninvasive BC1 systems, training time was substantially reduced, requiring only a 
single session of decoder calibration (-'20 min) and subject practice (--20 min In addition, 
we used standardized low-resolution brain electromagnetic tomography to reveal that the 
neural sources that encoded observed cursor movement may implicate a human mirror neuron 
system. These findings offer the potential to continuously control complex devices such as 
robotic arms with one's mind without lengthy training or surgery. 

El Online supplementary data available from cracks itip.orONK/8/036010/mmedia 

(Some figures in this article are in colour only in the electronic version) 

I. Introduction 

Brain—computer interface (BCI) systems may potentially 
provide movement-impaired persons with the ability to 
interact with their environment using only their thoughts to 
control assistive devices such as communication programs 

Prclecnt address: Matron. Inc.. Reston, Virginia 20190. USA. 
S Author to whom any correspondence should be addressed. 

1741-2560/11/036010.09533.00 

and smart artificial anns. Currently the most promising 
BCI systems rely on neural signals acquired noninvasively 
with electroencephalography (EEG) (Wolpaw and McFarland 
2004) or invasively with electroconicography (ECoG) (Schalk 
et al 2(x0K) or microelectrode arrays seated into cortical tissue 
(Hochberg et al 2000. 

Current noninvasive EEG-based BCI systems for 2D 
cursor control require subjects to learn how to modulate 
specific frequency bands of neural activity, i.e. sensorimotor 

0 2011 HOP Publishing Lid Printed in the UK 

EFTA_R1_02036189 

EFTA02693110



I. Neural Eng. 8 (2011) 036010 T 1 Bradbeny et al 

rhythms, to move a cursor to acquire targets (Wolpaw 
and McFarland 2004). These types of studies based on 
sensorimotor rhythms require weeks to months of training 
before satisfactory levels of performance are attained. Relative 
to EEG signals, the increased signal-to-noise ratio and 
bandwidth of invasively acquired neural data are commonly 
thought to be factors that reduce the training time required by 
users of invasive BCI systems (Schalk a al 2(08). In addition. 
studies of tetraplegic humans with implanted microelectrode 
arrays have exclusively demonstrated 213 control of a cursor 
through imagined natural movement (Hochberg et al 2006. 
Kim et al 2008). This decoding of imagined natural movement 
is also a likely factor in reduced training time since neural 
signals directly correlate with intended actions. 

However, recently several off-line decoding studies 
have demonstrated the reconstruction of cursor and 
hand kinematics from noninvasive magnetoencephalography 
(MEG) (Bradbeny et al 2009) and EEG (Bradberry et al 2010). 
The noise and bandwidth limitations of the noninvasively 
acquired signals did not impede decoding kinematics of 
natural movement. This finding implies that a noninvasive 
BCI system based on the decoding method reported in those 
studies may require little training time. 

In this study, we sought to investigate the use of the 
decoding method reported in those off-line studies in an EEG-
based BCI system during a single session lasting less than 
2 h that required only brief training. We hypothesized that the 
putative human mirror neuron system (MNS), which predicts 
and interprets one's own actions and the actions of others 
(Tkach et al 2008), could be exploited during training by 
asking subjects to combine motor imagery with observation 
of a video of cursor movement. In fact., several of the 
aforementioned invasive studies (Hochberg a al 2006, Kim 
et al 2(08) successfully demonstrated a similar approach 
to training. We further hypothesized that a neural decoder 
could subsequently be built off-line that would predict cursor 
movement from neural activity, and the decoder could then be
used on-line for real-time brain-control of cursor movement 
with little training time. Furthermore, to provide additional 
validation of our hypotheses, we sought to examine the 
involvement of neural regions in encoding cursor velocity 
during observation of the cursor movement and during tasks 
requiring a brain-controlled cursor to acquire targets in 213 
space. 

2. Materials and methods 

2.1. Experimental tasks 

The Institutional Review Board of the University of Maryland 
at College Park approved the experimental procedure. After 
giving informed consent, five healthy. right-handed, male 
subjects performed a three-phase task: calibration, practice 
and target acquisition. None of the subjects had previously 
participated in a BO study. In all phases. their EEG signals 
were acquired while they sat upright in a chair with hands 
resting in their laps at arm's length away from a computer 
monitor that displayed a workspace of dimensions 30 cm x 
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Figure 1. Setup of EEG-based BCI experiment. Subjects EEG 
signals were acquired while sitting in a chair facing a monitor that 
displayed a cursor and targets (only target acquisition phase). 
During the calibration phase, subjects observed a computer-
controlled cursor to collect data for subsequent initialization of the 
decoder. In the target acquisition phase (shown in the photo). 
subjects moved the brain-controlled cursor to acquire targets that 
appeared at the left, top, right, or bottom of the computer screen. 
(for a more detailed schematic, see figure s I in the supplementary 
data, available at Ntachs.iopmrvLINE/8/0360 Illinunethaj 

30 cm and a cursor of diameter 1.5 cm (0.20% of workspace) 
(figure O. Subjects were instructed to remain still and relax 
their muscles to reduce the introduction of artifacts into the 
EEG recordings. 

2.1.1. Calibration phase. During the calibration phase, 
subjects were instructed to imagine moving their right 
arm/finger to track a computer-controlled cursor that moved 
in two dimensions on the computer screen. The movements of 
the computer-controlled cursor were generated by replaying 
a 10 min recording of a pilot subject's brain-controlled 
cursor movements from one of his practice runs (this pilot 
subject did not participate as one of the five subjects in 
this study). Histograms of the horizontal and vertical 
positions and velocities of the computer-controlled movements 
indicated approximately uniform coverage of the workspace 
and biological motion respectively (figure 2). The decoding 
procedure described in section 2.3 below was subsequently 
executed (^-10 min of computation time) to calibrate the 
decoder so that it best mapped the EEG signals to observed 
horizontal and vertical cursor velocities. During pilot testing, 
we discovered that asking subjects to visually fixate the center 
of the workspace while simultaneously tracking the cursor 
added attentional demands that burdened the subjects and 
likely compromised the decoding; therefore, we told subjects 
they were free to move their eyes but to always maintain eye 
contact and spatial attention with the moving cursor. 

2.1.2. Practice phase. During the practice phase. the 
subjects used the calibrated decoder to attempt to move 
the cursor with their thoughts in two dimensions as desired 
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Figure 2. Histograms of observed cursor kinematics during the calibration phase. (A) Histograms of horizontal (left) and vertical (right) 
positions indicated approximately uniform coverage of the workspace. (13) Histograms of horizontal (left) and vertical (right) positions 
inferred movement: with bell-shaped velocity profiles (although these are more super-Gaussian than typical point-to-point movements). 
indicative of biological motion. The velocity histograms actually peak near 5000 but were truncated so the shape of the base could be 
viewed. 

(without task constraints). They were instructed to determine 
for themselves how to best control the cursor by exploring the 
workspace. They were also informed as to where the target 
locations would be in the target acquisition phase that would 
follow. Again, they were free to move their eyes. During the 
initial portion of the practice phase. horizontal and vertical 
gains were independently adjusted by the investigators to 
balance cursor speed and to ensure full coverage of the display 
workspace by the brain-controlled cursor. After the gains were 
manually adjusted (^-10 min). subjects practiced moving the 
cursor without task constraints for 10 min. 

2.1.3. Target acquisition phase. During the target acquisition 
phase, subjects were instructed to use their thoughts to move 
the cursor in two dimensions to reach a peripheral target (1.3% 
of workspace) that would appear pseudorandomly at the top, 
bottom, left, or right side of the computer screen. They were 
informed that if they did not acquire the target within 15 s, a 
new target would appear, and the trial was considered a failure. 
Four 10 min runs of target acquisition were performed with a 
rest interval of 1 min between runs. 

2.2. Data acquisition 

A 64-sensor Electro-Cap was placed on the head according 
to the extended International 10-20 system with ear-linked 
reference and used to collect 58 channels of EEG activity. 
Continuous EEG signals were sampled at 100 Hz and amplified 
1000 times via a Synamps I acquisition system and Neuroscan 
v43 software. Additionally, the EEG signals were band-
pass filtered from 0.01 to 30 Hz. Electroocular (EGG) 
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activity was measured with a bipolar sensor montage with 
sensors attached superior and inferior to the orbital fossa of 
the right eye for vertical eye movements and to the external 
canthi for horizontal eye movements. The EEG signals were 
continuously sent to the BCI2OOO software system (Schalk 
et al 20lµ) for online processing and storage. BCI2OOO 
was responsible for moving the cursor based on our decoder 
function. which we integrated into the open source software 
system. BC12OOO was also responsible for storing cursor 
movement data as well as collecting markers of workspace 
events such as target acquisition. Electromyographic (EMG) 
signals were amplified and collected at 2000 Hz from two 
bipolar surface electrodes over the flexor carpi radialis and 
extensor digitorum muscles of the right forearm using an 
Aurion ZeroWire system (10-1000 Hz bandwidth, constant 
electrode gain of 1000). 

2.3. Decoding method 

The decoding method employed in this study has been 
previously described (Bradberry et a! 2010) so will only 
briefly be described here. First, a fourth-order, low-pass 
Butterworth filter with a cutoff frequency of I Hz was applied 
to the kinematic and EEG data. Very low frequencies have 
previously been shown to possess kinematic information (Jerbi 
eta! 2OO7, Walden et al 2(08, Bradberry eta! 2O09), including 
those from low-pass filtered electrocorticographic signals (the 
local motor potential, LMP) (Schalk et al 2007). Next, the 
first-order temporal difference of the EEG data was computed. 
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To continuously decode cursor velocity from the EEG signals. 
a linear decoding model was employed: 

N L 

X[I)- - 11= ax + E E bakx Sat - kl (I) 
st=l 4.0 

N L 

y(t)- yrt — II= ay + E E Nkys„ — k I. (2) 
n=l 4=0 

where x [t] -41- I ) and y — I I are the horizontal and 
vertical velocities of the cursor at time sample r respectively, 
N is the number of EEG sensors, L (=I I) is the number of 
time lags. S„ [I — k] is the temporal difference in voltage 
measured at EEG sensor n at time lag k. and the a and b 
variables are the weights obtained through multiple linear 
regression. Only the most important sensors (N = 34) for 
velocity reconstruction found in a previous study (Bradberry 
et al 2010), which excluded the three most frontal sensors, 
were used for decoding. 

For the calibration phase, a (10 x 10)-fold 
cross-validation procedure was employed to assess the 
reconstruction accuracy of observed cursor velocity from EEG 
signals. In this procedure, the entire continuous data were 
divided into 10 parts: 9 parts were used for training, and the 
remaining part was used for testing. The cross-validation 
procedure was considered complete when each of the ten 
combinations of training and testing data were exhausted. 
and the mean Pearson correlation coefficient (r) between 
measured and reconstructed kinematics was computed across 
folds. Prior to computing r. the kinematic signals were 
smoothed with a fourth-order, low-pass Butterworth filter with 
a cutoff frequency of I Hz. For the ensuing practice and target 
acquisition phases. the regression weights (a and b variables) 
for the cross-validation fold with the highest r were used for 
online decoding. 

2.4. Scalp maps of sensor contributions 

To graphically assess the relative contributions of scalp regions 
to the reconstruction of cursor velocity, the decoding procedure 
described in the section above was run on standardized EEG 
signals. and the across-subject mean of the magnitude of the 
best b vectors (from equations (I) and (2)) was projected 
onto a time series (-110-0 ms in increments of 10 ms) of 
scalp maps. These spatial renderings of sensor contributions 
were produced by the topoplot function of EEGLAB (Delorme 
and Makcig 2004), an open-source MATLAB toolbox for 
electrophysiological data processing that performs bihannonic 
spline interpolation (Sandwell 1987) of the sensor values 
before plotting them. To examine which time lags were 
the most important for decoding. for each scalp map. the 
percentage of reconstruction contribution was defined as 

N 

E 
sbr, = 100% x  a= (3) 

E E bLi17 44;:ky 
n=l 

for all i from 0 to Is, where %T; is the percentage of 
reconstruction contribution for a scalp map at time lag i. 
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2.5. Source estimation with sLORETA 

To better estimate the sources of cursor velocity encoding. 
we used standardized low-resolution brain electromagnetic 
tomography (sLORETA) (Pascual-Marqui 2(102) software 
version 20081104. Preprocessed (low-pass filtered and 
differenced) EEG signals from all 34 channels for each subject 
were fed to sLORETA to estimate current sources. First, r 
values were computed between the squared time series of each 
of the 34 sensors with the 6239 time series from the sLORETA 
solution and then averaged across subjects. Second, the mean 
of the r values multiplied by the regression weights b (from 
equations ( I ) and (2)) of their associated sensors were assigned 
to each voxel. The regression weights had been pulled from the 
regression solution at the time lag with maximum %T. which 
had the highest percentage of reconstruction contribution. 
Third, for visualization purposes, the upper quartile of voxels 
(r values weighted by b) was set to the value one, and the rest of 
the r values were set to zero. Finally these binary-thresholded 
r values were plotted onto a surface model of the brain. 

2.6. Eye and muscle activity analysis 

To assess the contribution of eye activity to decoding, the 
decoding procedure was executed off-line with channels of 
standardized vertical and horizontal EOG activity included 
with the 34 channels of standardized EEG activity. The 
percent contribution of these cyc channels was then assessed 
by dividing the absolute value of their regression weights by 
the sum of the absolute value of all the regression weights. 
To assess whether muscle activity inadvertently aided cursor 
control, we cross-correlated EMG signals from flexor and 
extensor muscles of the right forearm with the .r and y 
components of cursor velocity over 200 positive and negative 
lags (-2 s to 2 s in increments of 10 ms). The start of the 
EMG and EEG/EOG recordings were not synchronized by 
computer, which is why the cross-correlation of the EMG and 
EOG signals at different lags was examined as opposed to 
only the zero-lag correlation. Prior to the cross-correlation, 
the EMG signals were decimated 20 times after applying 
a 40 Hz low-pass antialiasing filter; rectified by taking the 
absolute value: low-pass filtered with a fourth-order, low-pass 
Butterworth filter at I Hz: and first-order differenced. 

3. Results 

3.1. Calibrating a neural decoder front observed cursor 
movement 

BC1 systems are ultimately intended for movement-impaired 
persons; therefore, it is imperative that calibration of the neural 
decoder does not require overt movement. For this reason, we 
calibrated our previously developed decoder (Bradberry et al 
2010) in a manner similar to that described in an invasive BCI 
study (Hochberg et al 2006) that required only motor imagery 
during observation of cursor movement. More specifically, 
during the calibration phase of our study, subjects imagined 
using their finger to track biologically plausible movement of 
a computer-controlled cursor for 10 min. and we subsequently 
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Flgure 3. EEG decoding accuracy of observed cursor velocity during the calibration phase. (A) We computed the mean standard error 
(SE) of the decoding accuracies (r values) across crass-validation folds (n = 10) for each subject for x (black) and y (white) cursor 
velocities. (B) Superimposed reconstructed velocity profiles (red) and actual velocity profiles (black) matched well (data from subject 1). 
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‘^s 

Figure 4. Mean hrain-contna led cursor paths. Each colored path is the mean of he length-normalized trials for a single direction (left, top. 
right, or bottom) across all trials of all runs for a subject. Trials in which subjects did not acquire the target within 15 s were excluded from 
analysis. 

Table I. Mean (SE) of the hit rate and median MT for each target of each subject across runs = 4). 

Left Top Right Bottom Mean (SE) 

Hat% MT Hu% MT MT Hu% MT Hit% MT 

Subject I 94 (2) 4.24 66 (8) 5.90 98 (2) 4.62 55 (9) 8.88 78(11) 5.91 (1.05) 
Subject 2 83 (5) 6.52 96 (4) 4.40 85 (2) 3.76 85 (4) 4.40 87 (3) 4.77 (0.60) 
Subject 3 84 (9) 4.24 45 (4) 9.96 100 (0) 2.32 67 (9) 6.82 74 (12) 5.83 (1.65) 
Subject 4 71 (7) 3.40 33 (7) 4.88 65 (6) 8.16 21 (4) 6.68 47 (12) 5.78 (1.04) 
Subject 5 57 (14) 8.56 100(0) 2.72 60(18) 5.48 100(0) 2.00 79 (12) 4.69 (1.49) 

Mean (SE) 78 (6) 5.39 (1.06) 68 (13) 5.57 (1.35) 81 (8) 4.87 (1.09) 65 (14) 5.76(1.32) 73 (4) 5.40 (0.27) 

The median MT, instead of the mean (SE) Mt was computed for each direction of each subject because the MT distributions were skewed. 

computed the parameters of the decoder (--10 min) based on 
the cursor velocity and EEG signals. 

We quantified the accuracy of each subject's calibrated 
decoder by computing the mean of Pearson's r between actual 
and reconstructed cursor velocities across ten cross-validation 
folds (figure 3(A)). The across-subject mean r values for 
horizontal (s) and vertical (y) velocities were 0.68 and 0.50 
respectively. indicating high decoding accuracy. In fact, the 
accuracy was roughly double that of studies that decoded 
observed cursor movement from neural activity acquired more 
focally with intracranial microelectrode arrays (Kim a al 
2008. Truccolo a al 2008). Reconstructed velocity profiles 
also visually matched well with the actual velocity profiles 
(figure 3(B)). 

5 

3.2. Applying the neural decoder to move a computer cursor 

After a subject's neural decoder was calibrated and a —20 min 
practice phase with the decoder was performed. the subject 
moved a cursor with his EEG signals to acquire targets that 
appeared one at a time pseudorandomly at the left, top, 
right, or bottom of a 21) workspace (see movie I. available 
at .tacks.iop media). Four 10 min runs 
of target acquisition were performed with a rest interval of 
1 min between runs. The length-normalized cursor paths 
confirmed the subjects' ability to move from the center to 
the target (figure 4). For each target of each subject, the target 
hit rate and movement time (MT) across runs are given in 
table I. The overall means SE of the hit rate and MT were 
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Figure 5. Neural regions that encoded cursor movement. (A) Scalp sensor contributions to the reconstruction of observed cursor velocity 
during the calibration phase. Mean (ti = 5) scalp maps of the sensors revealed a network of frontal, central and parietal involvement. In 
particular, sensors Fl. rcz and CPI-CP4 of the International 10/10 system made the largest contribution. Light and dark colors represent 
high and low contributors, respectively. Each scalp map with its percentage contribution is displayed above its associated 10 ms time lag. 
revealing the 12.4% maximal contribution of EEG data at 50 ms in the past. (B) Sources that maximally encoded observed cursor velocity 
during the calibration phase. We overlaid localized sources (yellow) from 50 ms in the past onto a model of the brain in different 
orientations to reveal the involvement of the PrG (I), PoG (2), LPM (3). STS (4), and dorsal and ventral LPC (5). (C) Scalp sensor 
contributions to the brain-controlled cursor velocity during the target acquisition phase. Mean (n = 5) scalp maps of the sensors weights 
from the subjects' best runs revealed a network that had shifted to involve more central regions than the network of the calibration phase. 
The scalp maps revealed a 12.1% maximal contribution of EEG data at 50 ms in the past. (D) Sources that maximally encoded 
brain-controlled cursor velocity during the target acquisition phase. Localized sources (yellow) from 50 ms in the past revealed a substantial 
involvement of PrG (I) and PoG (2) and some involvement of LPM (3). As in the calibration phase. the STS (4) was involved. In contrast to 
the calibration phase. the LPC (5) played a minor role, and the IPL (6) played a major role. 

73 4% and 5.4O 0.27 s. The change in hit rate across runs 
is presented for each subject in figure s2 in the supplementary 
data, available at slacks. ior.org/JNE/8/0360 I Wnimed i 

3.3. Neural regions that encoded cursor movement 

To visualize the contributions of scalp regions and current 
sources to the reconstruction of cursor velocity, the weights of 
the decoder were projected onto scalp maps. and sLORETA 
(Pascual-Marqui 2002) was employed. Scalp maps of 
sensor contributions to the reconstruction of observed cursor 
movements in the calibration phase depicted the contributions 
as a network of frontal, central and parietal regions 

6 

(figure 5(A)). Within this network, sensors over the 
frontocentral and primary sensorimotor cortices made the 
greatest contribution. Concerning time lags. EEG data from 
50 ms in the past supplied the most information. In source 
space at 50 ms in the past, the precentral gyms (PrG), 
postcentral gyms (PoG), lateral premotor (LPM) cortex, 
superior temporal sulcus (STS). and dorsal and ventral portions 
of lateral prefrontal cortex (LPC) played a large role in the 
encoding of observed cursor velocity (figure 5(B)). 

Scalp maps of sensor contributions to the brain-controlled 
cursor velocity were generated from the mean of each subject's 
best run in the target acquisition phase. They depicted the 
contributions as having shifted to be more focused within 
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Table 2. Percent contribution of EOG activity to cursor velocity 
reconstruction. 

Target 
acquisition 

Calibration (best run) 
X Y X Y 

Subject 1 0.30 1.58 0.00 0.01 
Subject 2 0.00 0.01 0.20 0.18 
Subject 3 1.99 9.60 1.54 047 
Subject 4 0.00 0.01 94.9 0.04 
Subject 5 0.34 0.65 0.06 0.03 

Table 3. Mean (SD) across subjects of maximum absolute r values 
from cross-correlation of forearm flexor and extensor EMG activity 
with x and y components of cursor velocity. 

Target acquisition 
Calibration (best run) 

X 

Flexor 0.05 (0.04) 0.05 (0.04) 0.04 (0.02) 0.07 (0.03) 
Extensor 0.03 (0.02) 0.04 (0.01) 0.07 (0.08) 0.05 (0.04) 

central regions (figure 5(C)). As in the calibration phase, EEG 
data from 50 ms in the past supplied the most information. In 
source space at 50 ms in the past, compared to the calibration 
phase. a large shift occurred from anterior (frontocentral) to 
posterior (centroposterior) neural regions. More specifically. 
there was much less involvement of the LPC, the PrG and 
PoG exhibited an even more widespread involvement, and 
the inferior parietal lobule (IPL) made a large contribution 
(figure 5(D)). 

3.4. Eye and muscle contributions 

A concern in BCI studies is that eye or muscle movements 
may contaminate EEG signals thereby inadvertently aiding 
the control of a device/environment that should be controlled 
by thought-generated neural signals alone. To address this 
concern, we executed the off-line decoding procedure with 
channels of vertical and horizontal EOG activity included, 
and assessed the percent contribution of these eye channels 
(table 2). The percent contributions were low for the 
calibration and target acquisition phases except for a very 
high percent contribution (94.9%) to .r velocity reconstruction 
for subject 4 during target acquisition. Interestingly. 
this subject had the lowest decoding accuracy of all 
participants, suggesting that eye movements disrupted 
decoding. Furthermore. the fact that hardly any extreme 
frontal contribution is observed in the scalp maps and 
sLORETA plots (figure 5) is a testament to the non-
contribution of EOG activity to decoding To access whether 
muscle activity aide) cursor control, we cross-correlated EMG 
signals from flexor and extensor muscles of the right forearm 
with the x and y components of cursor velocity to find that all 
correlations were low (table 3). 
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4. Discussion 

We report the first EEG-based BCI system that 
employs continuous decoding of imagined continuous hand 
movements. Furthermore. we emphasize that the system 
requires only a single session of decoder calibration 
(--20 min) and subject practice (-20 min) before subjects 
can operate it. The off-line decoding results of the calibration 
phase that used observation of biologically plausible cursor 
movement were higher than those of invasive BCI studies 
and may imply, as discussed below, the involvement of a 
widespread MNS in humans. In the on-line target acquisition 
phase, subjects controlled a cursor with their EEG signals 
alone with accuracies comparable to other noninvasive and 
invasive BCI studies aimed at 2D cursor control. 

4.1. Comparison to other BCI studies 

Our study is the first noninvasive EEG-based BCI study to 
employ continuous decoding of imagined natural movement. 
Previous work in EEG-based BCI systems for cursor control 
required subjects to overcome an initial disconnect between 
intended movement and neural activity in order to learn 
how to modulate their sensorimotor rhythms to control the 
cursor. These studies based on sensorimotor rhythms required 
weeks to months of training before levels of performance 
were deemed sufficient for reporting (Wolpaw and McFarland 
2004). We believe the fact that we used a decoder based 
on imagined/observed natural movement, as opposed to 
neurofeedback training of sensorimotor rhythms, reduced the 
subject training requirements of our target acquisition phase 
to only a single brief practice session (-20 mint 

An ECoG study based on sensorimotor rhythms that had 
objectives similar to ours also observed that several subjects 
learned to control a 21) cursor over a short period of time 
(Schalk et al 2008). Although this ECoG study reduced 
training time compared to previous EEG studies (Wolpaw 
and McFarland 2004), some drawbacks included that pre-
training time was still taken for the initial selection of control 
features and for training subjects to first move the cursor in 
one dimension at a time. We were able to bypass these two 
pre-training steps. Another drawback of the ECoG study was 
that all five subjects used overt movement for initial selection 
of features, and two subjects used overt movement throughout 
the study. 

Additionally, the results of our target acquisition phase 
compare favorably to those in tetraplegic humans that were 
implanted with intraconical arrays in the arm area of MI 
(Hochberg et al 2006, Kim et al 2008) even though the 
performance results of those studies were only computed on 
data collected weeks to months after training began. Table 4 
compares our study to the aforementioned studies. 

4.2. Differential encoding of observed and brain-controlled 
cursor velocity 

The most notable differences between the regions that encoded 
for observed cursor velocity and brain-controlled cursor 
velocity were with the PIG, PoG, IPL and LPC. There was 
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7Lbµ 4. Comparison to most relevant human BCI studies of 2D cursor control. 

Number of 
subjects Neural data 

Target size as% 
of workspace 

Timeout 
(s) 

Movement 
time (s) 

Target 
hit% 

Wolpaw and McFarland 2004 4 EEG 4.9 I0 1.9 92 
Hochberg et al 21)06 Single units NA 7 2.5 85 
Kim et at 2(Xnc 2 Single units 1.7 3.1 75 
Schalk Hal 20)8 5 ECoG 7 16.8 2.4 63 
Present study EEG 1.3 Is 5.4 73 

a more widespread contribution from the PrG, PoG and 
IPL during brain control, which could reflect the increased 
involvement of imagined motor execution (Miller et al 20 I()) 

especially since these regions have previously been shown 
to be engaged in encoding cursor kinematics (Bradberry 
et al 2009. Jerbi et al 2(x7). The contribution from the 
LPC was largely attenuated during brain-controlled cursor 
movements, suggesting a transition out of the imitative 
learning environment of cursor observation (Vogt et al 2(X07). 

43. Implications for a human mirmr neuron system 

The training by cursor observation in the decoder calibration 
phase may have engaged the putative human MNS. which 
predicts and interprets one's own actions and the actions 
of others (Tkach et at 200%). In fact. neuronal activity 
acquired from intracortical microelectrode arrays implanted in 
the dorsal premotor cortex (PMd) and the arm area of the PrG 
(primary motor cortex, Ml), common sites for BCI-related 
studies. exhibits qualities of mirror neurons during observation 
of cursor movements (Cisek and Kalaska 2004, Wahnoun 
et al 2(x16. Tkach et al 2007). 

Current electrophysiological correlates of the putative 
human MNS, as acquired through EEG, are based on 
modulation of the mu rhythm (8-13 Hz). which exhibits 
suppression during action observation and action performance 
(Perry and Bentin 2009). These EEG correlates at the scalp 
level with high temporal resolution have been reported to be 
similar to those revealed by neural hemodynamics with high 
spatial resolution acquired with functional magnetic imaging 
(IMRI) (Perry and Bentin 2009). Since our examination of 
cortical sources that encoded observed cursor velocity revealed 
some regions commonly held to comprise the canonical human 
MNS (ventral LPM, STS. and LPC) (lacoboni and Dapretto 
20(X) and regions reportedly containing mirror neurons related 
to the task (PMd, MI) (Cisek and Kalaska 20rµ, Wahnoun 
et al 2($W,, Tkach a al 2007), our method appears to 
provide detailed temporal and spatial information about the 
internal representations of both observed and executed actions, 
which is not provided by the study of mu rhythm dynamics 
or hemodynamics alone. Our method provides further 
spatiotcmporal evidence that the MNS is involved during 
observed cursor movement by indicating the presence of 
planning activity that peaks at 50 ms in the past, excluding the 
decoding of passive viewing as an explanation and suggesting 
predictive decoding informed by forward models (Miall 20)3). 
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5. Conclusion 

In the near future, it will be important for whole-arm amputees 
and persons with impaired upper limb movement (e.g., spinal 
cord injury or stroke) to test our noninvasive BCI system since 
they are the target population for this assistive technology. 
Since our findings indicate that calibration of our decoder 
and initial practice by subjects require a short amount of time 
in a single session, we expect to avoid burdening patients 
with lengthy training. Employing our method will also permit 
future investigations into the putative human MNS, potentially 
providing further insights into training protocols for BCI 
systems. 
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