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Abstract

Chronic recordings from ensembles of cortical neurons in primary motor and somatosensory
areas in rhesus macaques provide accurate information about bipedal locomotion (Fitzsimmons et
al. 2009). Here we show that the linear and angular kinematics of the ankle, knee and hip joints
during both normal and precision (attentive) human treadmill walking can be inferred from
noninvasive scalp electroencephalography (EEG) with decoding accuracies comparable to those
from neural decoders based on multiple single-unit activity (SUAs) recorded in nonhuman
primates. Six healthy adults were recorded. Participants were asked to walk on a treadmill at their
self-selected comfortable speed while receiving visual feedback of their lower limbs (i.e.,
precision walking), to repeatedly avoid stepping on a strip drawn on the treadmill belt. Angular
kinematics of the left and right hip, knee and ankle joints and EEG were recorded, and neural
decoders were designed and optimized using cross-validation procedures. Of note, these decoders
were also used to accurately infer gait trajectories in a normal walking task that did not require
subjects to control and monitor their foot placement. Our results indicate a high involvement of a
fronto-posterior cortical network in the control of both precision and normal walking and suggest
that EEG signals can be used to study in real-time the cortical dynamics of walking and 1o

develop brain-machine interfaces aimed at restoring human gait function.
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Introduction

Little is known about the organization, neural network mechanisms and computations underlying
the control of walking in humans (Choi and Bastian 2007). Although central pattern generators
for locomotion are important in the control of walking, supra-spinal networks, including the
brainstem, cerebellum and cortex, must be critical as demonstrated by the changing motor and
cognitive (i.e., spatial attention) demands imposed by bipedal walking in unknown or cluttered
dynamic environments (Choi and Bastian 2007; Grillner et al. 2008; Nielsen 2003; Rossignol et
al. 2007). Neuroimaging studies show that thythmic foot or leg movements recruit primary motor
cortex (Christensen et al, 2001; Dobkin et al. 2004; Heuninckx et al. 2005; Heuninckx et al. 2008;
Luft et al. 2002; Sahyoun et al. 2004), whereas electrophysiological investigations demonstrate
electrocortical potentials related to lower limb movements (Wieser et al. 2010), as well as a
greater involvement of human cortex during steady-speed locomotion than previously thought
(Gwin et al. 2010a, 2010b). In this regard, studies using functional near-infrared spectroscopy
(INIE.S) show involvement of frontal. premotor and supplementary motor areas during walking
(Harada et al. 2009: Miyai et al. 2001; Suzuki et al. 2008; Suzuki et al. 2004). That primary
sensorimotor cortices carry information about bipedal locomotion has been directly proven by the
work ol Nicolelis and colleagues (Fitzsimmons et al. 2009), who demonstrated that chronic
recordings from ensembles of cortical neurons in primary motor (M1) and primary somatosensory
(S1) cortices can be used to predict the kinematics of bipedal walking in rhesus macaques.
However, neural decoding of bipedal locomotion in humans has not yet been demonstrated. Here
we compare the predictive power of neural decoders based on human scalp (nonminvasive) EEG
signals during treadmill walking with that reported from multiple single unit activity (SUA) in the
rhesus monkey performing bipedal treadmill walking (Fitzsimmons et al. 2009). We demonstrate
the feasibility of using scalp EEG to reconstruct the detailed kinematics of human walking, and
the potential of the proposed approach as a new tool for inferring the cortical contributions to

walking.
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81
82
83
84 Materials and Methods
g?‘} Experimental setup and procedwre. Six healthy adults, aged 18-45 (3 male, 3 female) with no
87  history of neurological disease or lower limb pathology and free of injury participated in the
88 study after giving informed consent. The study was conducted with approved protocols from the
89  Institutional Review Boards at the University of Maryland College Park, the University of
90  Maryland Baltimore, and the Baltimore VA Research and Development Committee.
91  Participants were first asked to walk on a treadmill, to establish their comfortable speed during a
92 S-minute familiarization period that preceded the beginning of the recordings. Next, a 2-minute
93 rest period (baseline) while standing on the treadmill was followed by 5-minutes of precision
94  walking, when subjects were instructed to walk on the treadmill at their comfortable speed while
95  receiving real time visual feedback (30 frames/sec) of their lower limbs through a video monitor
96 in front of them. Subjects were told 1o avoid stepping on the white stripe (2 inches wide) glued
97  diagonally on the treadmill’s belt by using the monitor’s video to keep track of foot placement
OR relative to the white siripe. This increased the atientional demands during treadmill walking
99  (Yogev-Seligman et al. 2008), a condition that can be considered to mimic walking in a novel
100 environment or under novel conditions (e.g., after brain injury). Thus, the precision walking
101 paradigm puts us a step closer 1o the actual application where patients have impaired gail function
102 and therefore would need to rely purely or significantly on effortful attentive conscious control of
103 gait. In an ancillary task, a subset of the participants whose decoders showed the best and worst
104  decoding performance in the precision walking task were also tested under normal walking
105  conditions that did not require precise positioning of the feet nor monitoring of foot placement
106  through a computer monitor (subjects were instructed to direct their gaze straight ahead).
107
108 Limb movement and EEG recordings. The three-dimensional (3D) joint kinematics of the hip,
109  knee and ankle joints were recorded using an infrared optical motion capture system (Optotrak,

110 Northern Digital, Ontario, Canada @ 100 Hz) with foot switch data (Koningsberg
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111 Instrumentation, Pasadena, CA. @ 100 Hz). Precision manufactured 5 cm diameter disks
112 (Tnnovative Sports Training, Chicago, IL), each embedded with three infrared diodes that formed
113 an equilateral triangle (~3 cm sides), were affixed with adhesive and secured with foam wrap at
114 the second sacral vertebra (S-2) and on the thigh, shank, and foot segments of each lower limb. A
115  segmental model of the lower limbs was then determined by digitizing joint centers for the hip,
116 knee and ankle joints of each limb. Gait kinematics were derived from the model using motion
117 analysis software (Motion Monitor, Innovative Sports Training, Chicago, IL) and exported as
118 ascii files containing time histories of the X, ¥ & Z positions, joint angular positions and joint
119  angular velocities for the hip, knee and ankle joints of the right leg. Whole scalp 60-channel EEG
120 (Neuroscan Synamps2 RT, Compumedics USA, Charlotte, NC, USA) and electro-ocular activity
121 were recorded (sampling rate of 500 Hz: band-pass filtered from 0.1 to 100 Hz; right ear lobe
122 (A2) was used as a reference) and time-locked with the movement kinematics using the

123 footswitch signals.

125 Power spectral density analysis. The power spectral density (PSD) for the kinematic data and for
126 each channel of the EEG recorded during rest and during the walking task for the 6 subjects was
127 computed using the adaptive Thompson’s multitaper method as implemented in Matlab’s pmm
128  function. The time-bandwidth product for the discrete prolate spheroidal sequences used was 4
129  and the frequency resolution 0.1 Hz, The confidence interval was set to 95% and was estimated
130 using a chi-squared approach. In order to account for the variability of the kinematics, and for
131  purposes of cross-validation of the decoders (see the Model performance metrics subsection),
132 during the walking task, the data for each gait parameter (x, v,z,¢,d@/dt) were divided into 5
133 segments (1 minute each one) and the PSD was caleulated for each of these 5 segments
134 independently. The segments were then averaged across all the parameters and all the subjects
135  leading to a grand average of the PSD, Fregquencies < 3 Hz accounted for > 90% of the total PSD
136 for the kinematics. The same segmentation was applied to each channel of the EEG recorded
137 during rest and walking conditions. The PSD of each segment was averaged across channels and

138 then averaged across subjects leading to a grand average. The grand averages for the kinematics

5
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139  and the EEG were then smoothed with local regression using weighted linear least squares and a
140 2nd degree polynomial model as implemented in the Matlab’s Joess function with a span
141 (percentage of the total number of data points) of 10%.
142
143 Signal preprocessing. Figure | shows our decoding methodology. All the data analysis. decoder
144 design and cross-validation procedures were performed off-line using custom software written in
145 MATLAB (Mathworks Inc., Natick, MA). The most frontal electrodes (FP1, FP2, FPz) were
146  removed off-line from all the subjects, as they are usually contaminated by eye-blinks. Temporal
147  electrodes were also removed, as they are most susceptible to artifacts from facial and cranial
148  muscle activity (Goncharova et al. 2003). Signals from each EEG electrode were decimated by a
149 factor of 5 (to 100 Hz), then filtered with a zero-phase, 3rd order, band-pass Butterworth filter
150 (0.1 — 2 Hz) and normalized by subtracting their mean and dividing by their standard deviation
151 {Bradberry et al. 2010). Kinematic data were filtered with a zero-phase, 3rd order, band-pass
152 Butterworth filter (0.1 — 3 Hz), as this frequency range accounted for 90% of the signal power.
153
154  Decoding method. A time-embedded (10 lags, corresponding to 100 ms in the past) linear Wiener
155  filter (Bradberry et al. 2010; Carmena et al. 2003; Fitzsimmons et al. 2009) was independently
156  designed, optimized, and cross-validated for each extracted gait parameter, The lincar model was
157  given by:
158

Mo
159 v)=a+3.Y b,S, (t—k)+e(r)

m=| k=0
161  where y(r)is the gait parameter measured (x, v,z,@,d@/dr)time series representing the linear
162 and angular kinematics, and their time derivatives, for the hip, knee and ankle joints; £ and

163 N are the number of lags and the number of electrodes, respectively:§ (r—4k) is the

164  standardized voltage measured at EEG electrode n at lag time kA, @ and b are weights

165  obtained through multiple linear regression and £(f) is the residual error. The parameters of the
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166  model were calculated using the standard GLM functions in MATLAB under the Gaussian
167  distribution using the Matlab’s linear link function.

168

169  Model performance metrics. In order to assess and compare the predictive power of each decoder
170 (neural decoders were trained independently for each subject, and each decoded parameter), a 5-
171  fold cross validation procedure; i.e., 5 distinct sets of test data that were not used to train the
172 decoder were employed for testing purposes. That is, the data recorded during the 5 minutes of
173 the walking task were divided into 5 segments (1 minute each one). Four segments were used for
174  training, while the remaining segment was used for testing the model. This procedure was
175 repeated for all the possible combinations. The Pearson correlation coefficient ( 7 ) was calculated

176 between the known measured signal and the predicted decoder’s output as follows:

177 -
r(x. %) = cov(x,x)
178 0.0

179  where x is the actual measured parameter, X is the prediction of that parameter and &, and
180 o, are the standard deviations of xand X respectively.

181  The SNR (signal to noise ratio) was calculated according to Fitzsimmons et al. (2009).

182 ) Var(x) |

SNR(x,x)=10log,| ————
183 MSE(x) )
184

185  where the variance (Var)of the actual measured parameter (signal x) was calculated by
186 subtracting out the mean of the signal, then squaring and averaging the amplitude. The noise or
187  error ( x ) was the difference between the predicted and actual measured signal. The mean squared
188  error (MSE) was calculated by squaring the difference, then averaging to get the mean squared
189 error { MSE ), or the power of the noise. The ratio between Var(x)and MSE(X) was converted
190 into a decibel (dB) scale. A SNR with a value of “0” means that the signal and the noise are
191 equally present in the reconstructed kinematic parameter. A SNR < 0 (poor prediction) indicates a
192 noisy reconstruction, while a SNR = 0 (good prediction) indicates a high-quality reconstruction of

193 the signal.
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194

195 Sensor dropping analysis. A sensor dropping analysis (SDA) was used to evaluate the
196  importance of groups of sensors of different sizes to decoding accuracy (e.g., Carmena et al.
197 2003; Fitzsimmons et al. 2009). First, decoder models were trained by using each lag of each
198  sensor (one lag at a time) with the above mentioned 5-fold cross validation procedure. In order to
199 rank the sensors, two different methods were then used based on which kinematic parameter was
200 to be decoded. For the joint angle (@) and the angular velocity (d@/ dt) the sensors were ranked
201 based on the maximum value of the correlations calculated at each lag. For the Cartesian
202 positions (x, ¥, z) reconstructions, the sensors were ranked according to the following sensor
203 sensitivity curve equation (Bradberry et al. 2010):

204

205
206 R, L+IZ"‘IIC"“+C o

207 where [ is the number of lags, g is the rank of sensor n and ¢ are the best correlation
208  coefficients for each Cartesian position (x, y,z). These procedures were followed for all the 45
209 sensors used for decoding after removing the most prefrontal and temporal electrodes. The best

210 34 and 16 sensors out of the 45 sensors ranked were then used for training and testing the

211 decoders for each kinematic parameter extracted.

213 Decoding kinematics by regions of interest (ROJ). In order to assess the contribution to the
214 decoding of each scalp area. the scalp was divided into 5 major ROIs: prefrontal (PF), central
215 (SM), posterior-occipital (PO) and right (RH) and left (LH) hemispheres. The kinematics were
216 decoded using the sensors belonging to each of these ROIs, leading to 5 different decoders for
217 each parameter for each joint and each subject.

218

219 Scalp Maps. To visualize the relative contributions of scalp regions to the reconstruction of the

220 position (x,y,z), joint angle (@) and the angular velocity (d¢/dt) of the hip, knee and ankle

221  joints, the squared correlation (i.e., variance) values ¢ for each sensor at each lag were projected
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222 into a time series of scalp maps (-100-0 ms in increments of 10 ms for a total of 11 scalp maps).

223 The topoplot function of EEGLAB [Delorme and Makeig 2004 (http://scen.ucsd.edu/eeglab’)]

224 was used to plot the correlation values. The contribution of the reconstruction of each lag, for the

225  Cartesian data, was calculated as follows (Bradberry et al. 2010):

N
0 Z\l'lt.‘lm'x +l:‘1m'-|- +c¢t
227 %7, =%100% L
228 >y Ve + Oy + 0l
229 n=l k=0
230
231 forall i from 0to L, where %7 is the percentage of reconstruction contribution at time lag /.
232

233 Artifacts. To address the issue of potential mechanical artifacts introduced by motion of the EEG
234 cap wires to the recording amplifiers (due in turn to movement of the subject) the phase-locking
235 value (PLV) (Lachaux et al. 2000, 2002) was computed by using Morlet wavelets (Tallon-Baudry
236 etal. 1997). We made the assumption that if the motion of the EEG wires corrupted in some way
237  the measured EEG signals, this problem should have been observed in all the electrodes as the
238 wires were bundled in a single connector. We were particularly interested in investigating the
239 phase in the 1-2 Hz range, as these were the main frequencies used for decoding. We calculated
240 the PLV between each electrode for the walking task and the corresponding kinematics recorded
241  from the subjects. The averaged values of PLV at | and 2 Hz were averaged across the electrodes,
242 leading to a mean value at the two frequencies of interest, and compared with the correlation
243 values of the decoding.

244 Amalvsis of potential eve movement contributions to decoding. In order to assess a potential
245 contribution of the movement of the eyes to decoding, the decoding process was also carried out
246 by adding the standardized vertical electrooculogram (VEOG) activity to the optimal set of
247  electrodes used for decoding (Bradberry et al. 2011). The r-values and the regression weights
248  were calculated in this new condition. We compared the r-values with and without the VEOG
249 electrode by calculating the difference in % and divided the absolute value of the regression
250 weights of the eye-electrode by the sum of the absolute value of all the regression weights of the

251 best fold.
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252

253 Results

254 Spectral signature of walking kinematics and associated high-density EEG. The power spectral
255  density (PSD) of the gait kinematics (black) in the 0.1 — 5 Hz range along with the 95%
256  confidence intervals (gray) are depicted in Figure 2A. The PSD shows that > 90% of the power is
257  contained in the 0.1 = 3 Hz frequency band with a peak (26.45 dB) at ~1.8 Hz. The ratio between
258 upper and lower bounds of the confidence interval throughout all the frequencies was ~6.6 dB.
259  Confidence intervals (95%) of the PSD of the EEG at rest (black) and during precision walking
260  (gray) are shown in Figure 2B. Notably, PSD{walking) > PSD{rest) in the delta and theta bands
261 (=0.1 — 7 Hz) and in the low beta range (13 — 18 Hz), whereas for frequencies > 18 Hz the
262 PSD(walking) < PSD(rest). Importantly, the suppression in the mu band observed during upper
263  limb movements (Pfurtscheller et al. 2006) is also present during precision walking in the 8§ — 12
264 Hz range. This is clearly depicted in the plot of the ratio of PSD(walking) to PSD{rest) shown in
265  the inset. Of note, the ratio in the 0.1 — 2 Hz range used for decoding was ~ 1.0 dB implying that
266 walking did not alter the spectral signature in this low frequency band (i.e., low delta) — a finding
267  consistent with the data reported by Gwin et al. (2010).

268

269 Decoding accuracy. Our EEG decoding method was able to reconstruct 3D linear and angular
270  kinematics of the ankle, knee and hip joints with high accuracy. In order to quantify the level of
271 accuracy, we computed the Pearson’s r and the SNR between measured and predicted Cartesian
272 positions, joint angles and angular velocities across cross-validation folds. SNR proved to be a
273 more sensitive measure compared to r, which describes the correspondence of signal waveforms,
274 but is insensitive to amplitude scaling and offsets. The average of the correlation values (r)
275 between predicted and recorded kinematics for the six subjects was 0.75 (£0.1) and the signal-to-
276 noise ratio values > 0 (4.13 £ 2.03) in all but one measure (subject 86: x axis of the ankle; SN =
277 -0.35£1.09) confirmed the good quality of the decoded signals. Overall, correlation values across
278 the subjects were slightly higher for joint angle (mean » = 0.78+0.1) and angular velocity {mean »
279 = 0.7840.09) than for Cartesian positions (mean r, .. = 0.712£0.13). Figures 3(A) and 3(B). show,
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280  respectively, examples of the measured (black) and the reconstructed (gray) kinematics for the
281 best (84) and worst (S5) subjects in terms of decoding accuracy. As it can be seen, even in the
282 case of the worst case we were able to decode the kinematic parameters with an accuracy r =0.67
283 £0.09. The quality of the reconstructions of the gait trajectories in 3D space is shown in Figure 4,
284  where an example of the actual and predicted angular velocities and joint angles, and their
285  relative phasing, for the ankle, knee and hip, for subject 4 are depicted in 3D space as well.

286 Table 1 reports the mean and the standard deviation (SD) of the correlation coefficients
287 {#) and of the SNR (dB) values across cross validation folds for all subjects, the best (S4) and
288 worst (55) cases (subjects), and for intra-cortical recordings from rhesus monkey 1 (Fitzsimmons
289 et al. 2009), while Figure 5 shows the distribution of the correlation coefficients (r) versus SNR
290  (dB) for the 6 subjects and for the 2 rhesus monkeys reported in the Fitzimmons® experiment. All
291 the decoded accuracies resulted in mean » values = 0.5 and high SNVR values (all but one = 0),
292 which were comparable with the values reported using recording spikes from rhesus monkeys
293 (Fitzsimmons et al. 2009), In order to rule out the hypothesis that the visual feedback aided
294  decoding, we report in Table 2 the r and SNR values of the best and worst subject decoded under
295  natural walking conditions (no visual feedback and no stripe to step over) from our ancillary task.
296 We used the neural decoders, previously trained using data from the precision walking task, to
297 predict the lincar and angular kinematics during normal walking. The decoding accuracies
298  reported for the two conditions were comparable. The averages of the correlation values (r)
299  between predicted and recorded kinematics for the precision and natural walking task for S4 were
300  respectively 0.85+0.08 and 0.7+0.13, while for S5 were respectively 0.67£0.09 and 0.78+0.12.
301

302 Decoding accuracy by Region of Interest (ROI). Figure 6 depicts the mean decoding accuracy
303 across the three joints for the 5 different ROls. For both the angular velocity and the joint angle
304  the r and SNR values were higher when all the sensors found during the decoder optimization
305  phase were used to decode. Decoders built based on a subset of electrodes comprising the right
306  (RH) or left (LH) hemispheres scalp regions showed the highest » values among the selected
307  ROIs, while the subset of electrodes spanning the central scalp ROI (SM) showed the lowest r

11
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308  values. In terms of SVR, the right hemisphere, prefrontal; and posterior-occipital ROls returned
309  the highest values, while the central scalp ROI returned the lowest values. However, statistically
310 these differences were not significant (Kruskal-Wallis test; all comparisons at p> 0.05).

311

312 Topography of the correlation values of the sensors. The topography of the squared correlation
313 (1.e., variance) values of the sensors at the best lag for the best (subject 84) and worst (subject 83)
314 decoded cases is plotted in Figure 7. These scalp maps represent the individual contribution of
315  electrodes to decoding, that is, the spatial distribution of the EEG information about walking
316 contained at each electrode site. From these scalp maps, it can be inferred that neural information
317 about walking is distributed across a sparse cortical network at the macro-scale of EEG. Scalp
318  maps of sensors most relevant to decoding of the right limb suggest that scalp areas from both
319  hemispheres, somewhat lateralized to the right are involved during walking. Although there are
320  some common scalp regions relevant across all the gait parameters, these scalp regions
321  accounting for the highest variance are different across the two subjects S4 and 55, For instance,
322 Ce6, FZ, P5, and AF4 electrodes are recruited across gait parameters for subject S4, whereas for
323 subject 85 electrode locations at FC6, P6, and PO2 on the right hemisphere seemed to be relevant
324 for decoding walking across all the kinematic parameters. There were also other important
325  differences across subjects. For example, in subject $4 decoding of both Cartesian and angular
326 kinematics recruited anterior scalp arcas (electrode locations AF3, FZ and AF4) that in some
327 cases extended to left frontal sites (F5). These scalp areas were absent in subject 55 who showed
328  the lowest decoding accuracies.

329 Of note, the scalp maps of the highest (e.g., r*2 = .2) electrode contributions to decoding
330 the right limb kinematics were rather sparse, particularly for subject 85, who showed rather focal
331 recruitment of electrodes on the right hemisphere, compared with a more bilateral, but still sparse
332 recruitment of electrodes for subject 84, In summary, a sparse network comprised of right
333 posterior-occipital, right lateral, and bilateral anterior-frontal scalp regions appeared to contain
334 decodable gait information.

335
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336 Minimum number of sensors. Given that the analysis of scalp maps relevant for decoding showed
337  a sparse cortical network for walking, the number of sensors was further optimized using the
338  SDA approach. As shown in Figure 8, the average number of sensors needed to achieve the
339  reporied correlations was ~27-32, but on average decoding accuracy reached a phase of plateau
340  (i.e., an improvement in DA < 5%) with 14 sensors (Figure 8A). As shown, with an average of
341 27 sensors (i.e., the *best” sensors), the mean » value across the 6 subjects was 0,75 (=0.06) (black
342 bars), while selecting the best 14 sensors led to a mean r value across the 6 subjects of 0.72
343 (+0.06) (white bars), that is, less than 5% reduction in decoding accuracy (Figure 8B).

344

345 Discussion

346 Gait kinematics can be inferred from scalp EEG signals with high accuracy. This study
347  demonstrates, for the first time, that non-invasive scalp electroencephalographic (EEG) signals
348 can be used to decode kinematic parameters extracted during walking with high accuracy. Of note
349 is the fact that even though we recorded EEG from 60 channels, which some investigators
350  consider to be high-density recordings (Tononi et al. 2010), we showed that as few as 16 sensors
35l were reguired for decoding with high accuracy. Encouraged by promising results achieved in
352 previous studies carried out in our laboratory (Bradberry et al. 2008, 2009a, 2009b, 2010), we
353 designed neural decoders by using time-domain EEG features extracted solely from the
354  fluctuations in the amplitude (i.c. amplitude modulation or AM) in the EEG signals in the low
355  delta frequency band (0.1 — 2 Hz).

356 Even though Onton et al. (2005) reported significant changes in the theta band (4 — 8 Hz)
357  reflecting increasing cognitive demands, we emphasize that our decoders were designed to use
358  information contained in the delta band only. Moreover, our decoders were able to predict gait
359  kinematics under two different conditions (precision walking and normal walking), which clearly
A60  differ in terms of the cognitive demands and task constraints, and thus changes in cognitive
361  demands or modulations in higher frequency bands could not contribute to decoding.

362 Our decoding approach proved to be robust as it prevents over-fitting (i.e., by employing
363  separate training and testing trials) and minimize the effect of artifacts because trials with artifacts
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364  in the training set would contribute minimally to the learning of the optimal decoder weights, and
365  those in the test set could only reduce, not improve, the decoding accuracy (Tsuchiya et al. 2010).
366 The fact that critical information for decoding lower limb kinematics is contained in the smoothed
367  amplitude modulations (AM) in the lower half of the so-called delta band (i.e., 0.1 — 4 Hz) is
368  consistent with recent EEG, electrocorticographic (ECoG). and local field potential (LFP) upper
369  limb movement decoding studies that use the fluctuations in the amplitude of highly smoothed
370 signals for decoding (Waldert et al. 2008; Lv et al. 2010; Ball et al. 2009; Acharya et al 2010;
37 Ince et al. 2010; and Zhuang et al 2010). It is also consistent with observations by Gwin et al.
372 (2010a), who showed that meaningful changes during walking or running occur at low
373 frequencies (< 10 Hz) in high-density EEG.

374 Fitzsimmons et al. (2009) were the first to prove that linear decoders could be used to
375 reconstruct locomotion, but their experiments were based on intracortical recordings (spikes) in
376  nonhuman primates. Ferris and colleagues have recently shown electrocortical activity coupled to
377 gait cyele phase during treadmill walking in humans (Gwin et al, 2010b), but their study did not
378  decode gait parameters from the EEG signals. In our experiment, 6 subjects were asked to walk at
379  their preferred speed on a treadmill while receiving visual feedback of their lower limbs (through
380  avideo monitor at eye level in front of them), to repeatedly avoid stepping on a strip drawn on the
381 treadmill belt - a condition we called precision walking, Even though angular kinematics were on
382  average slightly better decoded than lincar kinematics, we could not identify any parameter that
383 stood out as the best for decoding, except for the Cartesian “x” parameters which showed a lower
384  decoding performance overall. All the kinematic parameters but “x™ position were decoded with
385  mean rvalues > 0.7 (mean r, = 0.67 (+0.16), mean r, = 0.77 (£0.1), - = 0.77 (0.13), 1y = 0.78
3RO (20.09), rung v = 0.78 (20.1); and no statistical difference was found among the 5 parameters (p =
387  0.01. ANOVA). Moreover, as shown in Figure 4, the phasing relationship between ankle, knee
AB8  and hip angular kinematics is preserved in the reconstructed trajectories even though the three
389 joints were decoded independently from each other. Remarkably, as depicted in Figure 6, SNR
390  and r values were comparable to the ones reported by Fitzsimmons et al. (2009), a result that
391  supports the hypothesis that the EEG signals in the low delta frequency band over a large but

14
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392  sparse cortical network contain decodable information that could be used to design EEG-based
393 brain-machine interface (BMI) systems for restoration of lower limb movement. It cannot be
394 overemphasized that the same decoders calibrated using data from the precision walking task
395  were able to reconstruct the gait kinematics during normal walking, which did not require
396  subjects to monitor and control foot placement and had not access to visual feedback of foot
397  placement, thus demonstrating the robustness of our methods.

398

399  Scalp map analysis. Decoder optimization and scalp maps of correlations for the right limb
400  confirmed that human walking is sub-served by a complex, distributed but sparse cortical
401  network, in which different scalp areas over anterior, right lateral and right anterior-occipital
402 scalp areas seem to equally contribute to the decoding, at least at the macro-scale of EEG. As we
403  decoded the right leg only, it still remains to be seen whether this sparse network that encoded
404  right-side lower limb kinematics would be mirrored in the case of the left leg kinematics.

405 Qur best decoded case (subject S4) showed the highest gait-related information in the
406  bilateral anterior, and the lateral and posterior-occipital scalp areas in the right hemisphere. Of
407  note, our worst subject (subject 85) showed a lack of anterior-frontal recruitment for decoding the
408  right limb, which may explain the lower decoding accuracies. In fact, it is plausible that because
409  the precision walking task presumably involves both visual attention and decision making with
410  respect to deciding when or how best to avoid stepping in the white line drawn on the treadmill,
411 this lack of anterior-frontal recruitment for decoding affected the overall performance. The fact
412 that different scalp brain areas could equally contribute to the decoding is supported by the » and
413 SNR values obtained when decoding kinematic parameters using only sensors from specific ROIs,
414 In fact, even though differences in terms of r and SNR were observed between the 5 selected
415 ROIs, statistically these differences were not significant. Our observations are in agreement with
416 the findings by Gwin et al. (2010b), who used source analysis and reported electrocortical sources
417 in the anterior cingulate, posterior parietal and sensorimotor cortex associated with intra-stride
418  changes in spectral power. During the end of stance, they also observed that alpha and beta band

419  spectral power increased in or near the left/right sensorimotor and dorsal anterior cingulated
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420  cortex. However, power increases in the left/right sensorimotor cortices were more pronounced
421 for contralateral limb push-off than for ipsilateral limb push-off. Studies carried out using fNIRS
422 also showed involvement of frontal, premotor and supplementary motor areas during walking
423 (Harada et al. 2009; Mivai et al. 2001; Suzuki et al. 2008; Suzuki et al. 2004). These results
424 support the idea that walking is represented across a plurality of cortical brain areas.

425

426 Minimum number of sensors. An important issue in brain-machine interface design is concerned
427  with the minimum number of sensors necessary to achieve a reasonable decoding accuracy. As it
428 s well-known (Alpaydin 2004), a common occurrence in machine learning is the fact that as the
429  number of input features increases, the decoding accuracy of the predictions increases up to a
430 certain point, after which the model becomes too complicated, over-fitting might occur and as a
431  consequence of this fact performance decreases. Given this, we decided to compare the r values
432 obtained with the number of sensors found in the SDA with the best » values obtained by using up
433 10 16 sensors. Our resulls indicate that ~14 sensors could be sufficient 1o decode human
434 locomotion using EEG.

435

436 Variability of the kinematics and its relation with decoding accuracy. Spectral analysis of the gait
437  kinematics showed that more than 90% of the power was retained in the 0.1 — 3 Hz range,
438  justifving our choice to band pass [ilter the kinematic data within this frequency range. The 6.6
439  dB ratio of the upper and lower confidence intervals suggested a significant variability of the
440  kinematic parameters across the 6 subjects. This variability could be due to the fact that each
441  subject chose his/her comfortable pace for the walking task, but also varied his’her gait speed
442 during the task. Consistent with upper limb movement decoding studies (Bradberry et al. 2010), a
443 negative correlation between movement variability and decoding accuracy was found when
444  decoding gait parameters for both angular velocity and joint angle decoding (Figure 9).
445 Specifically, the relationship between the decoding accuracy and gait variability, as measured by
446  the kurtosis (kurtosis = 3 implies normal distribution), for angular velocity and the joint angle
447  was estimated. Low values of the kurtosis (~3) (Figure 9) and high decoding accuracy for both
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448  the angular velocity and the joint angle suggest that a normal distribution is responsible for an
449  increase in decoding accuracy.

450

451 Decading accuracy was not affecied nor corrupted by eve, mechanical or EMG artifacts. The
452  spectral analysis of the EEG showed interesting results. As in the case of the upper limbs
453 (Pfurtscheller et al. 2006), a desynchronization during the walking task was found in the mu band
454 (8 — 12 Hz). As reported by Gwin et al. (2010a), PSD values during walking were generally
455 higher than PSD wvalues during rest (i.e., standing) at low frequencies (0.1 — 7 Hz) and in the
456  middle beta band (13 — 18 Hz). The ratio of PSD{walking) to PSD{rest), albeit small (e.g., ~ 1dB
457 inthe 0.1 - 2 Hz), is consistent with those observations. Moreover, Gwin et al. (2010) reported
458  that gait-related artifacts removed from EEG signals were insubstantial when subjects walked at a
459 slow pace (0.8m/s = 2.88 km/h). In our experiments, no subject walked faster than 2.4 kmv'h, thus
460  reducing further the likelihood of mechanical artifacts. Nevertheless, it could still be argued that
461  EEG signals measured during gross motor tasks like walking are prone 1o a myrad of
462 physiological, mechanical. and environmental artifacts that would prevent accurate measurement
463  and analysis of cortical dynamics during treadmill walking (Gwin et al. 2010a). However, our
464  proposed method for reconstruction of gait parameters and additional analyses of the potential
465  influence of artifactual components to gait decoding suggest otherwise,

466 First, the decoding accuracies with and without inclusion of the vertical electrooculogram
467 (VEOG) electrode were similar. For all the decoded gait parameters except for the ankle in
468 subject 2 (S2, r, = 5.1%, r. = 9.6%), the addition of the VEOG e¢lectrode increased negligibly the
469 decoding accuracy by a maximum of 3.1%. The contribution of VEOG in terms of regression
470  weights was also negligible for all decoded gait parameters except for the reconstruction of limb
471 trajectories in the ankle's z-dimension for subject 2 {52, r. = 28%). Furthermore, 52 showed the
472 lowest r-value for the ankle (r. = 0.3120.19), supporting the notion that eyes movements did not
473 contribute to the high r and SNR values found in this study. Results are reported in Table I11. It is
474  also important to point out that in the normal walking condition, subject's gaze was instructed to

475  be maintained straight ahead. This condition is likely to be associated with significant eve
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476  movements due to the compensation of displacements of the head during walking (and neck
477  muscle activity). Indeed, significant eye movements have been reported during standing and
478  walking (Gramann et al., 2010). However, two lines of reasoning argue against the potential
479  contributions of eye movement to decoding: First, the same decoder was used to infer limb
480  kinematics in two conditions (normal walking and precision walking) that differed in the pattern
481  of eye movements (gaze straight ahead vs. monitoring foot placement in a monitor), and second,
482 the correlation analysis showed that eye movements did not assist gait decoding.

483 Second, Goncharova et al. (2003) has shown that electromyographic (EMG) and ocular
484  artifacts do generally occur mainly at frequencies higher than 8 Hz, which is 4 times higher than
485  our frequency cutoff of 2 Hz used for reconstruction. Moreover, Goncharova et al. (2003)
486  reported that EMG activity was localized to the frontal and temporal electrodes in the specific
487  frequency band we used for decoding (delta, < 4 Hz). Therefore, in our study frontal and temporal
488  electrodes were removed from the analysis.

489 Third, correlation values were also calculated between baseline EEG signals band-pass
490  filtered at 0.1 — 2 Hz and gait kinematics (< 3 Hz) and compared with EEG signals acquired
491  during walking. which we hypothesized contained relevant information about gait parameters.
492  Indeed, our results showed that attempting to map baseline EEG signals to gait parameters
493 resulted in extremely low decoding: as a representative example, the r and SNR values for the
494  ankle joint angle for our best decoded subject (S4) were 0.05 £ 0.07 and -15.27 + 33.27,
495 respectively, for the baseline EEG signals, whereas decoding accuracies were high (0.87 + (.01
496  and 6.1 £ 0.59 for r and SNR, respectively) when using EEG signals acquired during the walking
497  task, confirming that EEG signals measured during walking contained detailed cortical
498  information about gait parameters.

499 Fourth, to rule out the presence of mechanical artifacts introduced by motion of the EEG
500  cables or walking itself, we computed the phase-locking value (PLV) among sensors. The
501  rationale was that potential motion artifacts due to EEG wires or the subject’s motion would
502  affect all sensors equally. To assess the phase-locking value using wavelet analysis, the

503  significance threshold value was set based on the values calculated by Lachaux et al. (2002). In
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504  our case, since we used 6 cycles (n_ ) for the wavelets and 10 cycles (n_ ) for the integration

505 window, the significance threshold was estimated to be 0.71. We applied such analysis to both the
506  baseline EEG and the walking EEG conditions. Our results suggest that mechanical artifacts did
S07  not play a role in decoding. As a representative example, the mean PLVs across electrodes of our
508  best subject (S4) for the ankle joint angle kinematic during walking were 0.55 + 0.08 at 1 Hz,
509  0.53 £ 0.05 at 2 Hz and 0.54 + (.06 average across 1-2 Hz (the lower bounds for gait-cvcles were
510 = 1Hz). Remarkably, when the baseline EEG condition was used, the mean values across
511 electrodes were 0.37 = 0.02 (at 1 Hz), 0.49 = 0.03 (at 2 Hz) and 0.43 £ 0.01 {mean of 1 and 2 Hz),
512 which were comparable to those during walking and suggesting lack of mechanical coupling due
513  to concerted wire movement.

514 Fifth, we note that our decoding accuracies were high independently of whether the
315 reconstructed parameters were linear or angular gait kinematies. It is very unlikely that a (global )
516  motion artifact would alfect or influence equally both types of gait parameters, For example,
517  mechanical artifacts due to up-down motion would be expected to affect the decoding of vertical
518  trajectories of the hip, ankle and knee joints, but not the decoding of angular joint velocities as
519  they are not linearly related. Nevertheless, the motion of the center of mass (COM), which would
520 be expected to be directly related to that of any upward/downward movement of the EEG wires
521 due to the subject’s mechanical motion was very small (sacrum’s vertical movement, in meters:
522 S1=-0.01 £0.015, 82 = 0.0006 = 0.007, §3 = -0.006 £ 0.015, 84 = -0.005 £ 0.013, §5 = -0.0095
523 £ 0,016, S6 = -0.007 £ 0.012). In addition to this, decoding of angular velocities (not linearly
524 related with the 3D translational movements of the cables or the sacrum) for the ankle, hip, and
525  knee resulted in high decoding accuracies that were comparable to the ones of the joint angle and
526 Cartesian positions., Furthermore, it is unlikely that the motion artifact would have been the same
527  for both walking conditions; indeed, the fact that the same decoders were used to decode gait in
528  both walking (precision & normal) conditions is a strong argument against the potential influence

529  of movement artifacts to decoding.

530 Finally, we note that the mapping of the spatial distribution of the highest contributing
531  electrodes to decoding resulted in a sparse but distributed network lateralized to the right
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532  hemisphere with a bilateral anterior contribution suggesting specificity of the cortical
333 representation of the right limb’s role in walking is contained in the EEG signal. Our scalp maps
534 allowed us to map electrode locations on the scalp surface according to the maximal amount of
535  information that they might carry about each gait parameter. Remarkably, the scalp maps were
536 different across gait parameters; that is, the amount and type of information about gait was
537  different across electrode sites. As noted above, the same network was used for decoding both
538  walking conditions.

539 Owerall, these results demonstrate the feasibility of employing a noninvasive EEG-based
540  brain-machine interface (BMI) for the restoration of gait. This view is supported by fMRI studies
541  in which cortical activation was detected when subjects imagined themselves walking (Bakker et
542 al. 2007, 2008; Iscki et al. 2008) and when paraplegic patients imagined foot and leg movements
543 {Alkadhi et al. 2005; Cramer et al. 2005; Hotz-Boendermaker et al. 2008). A cortically EEG-
544 driven BMI for the restoration or rehabilitation of walking could be also used as a strategy to
545  harness or polentiate the remaining functionality and plasticity of spinal cord circuits isolated
546 from the brain (Behrman et al. 2006; Grasso et al. 2004; Lunenburger et al. 2006), and as a new
547  tool for assessing the cortical contributions to walking in health and disease. or to study the
548  changes in these contributions during learning and adaptation.

549

550  Conclusion. We have shown the feasibility of decoding human walking under precision
551 (attentive, requiring visually-guided foot placement) and normal (subjects’s gaze was straight
552 ahead) conditions by using scalp EEG with as few as 16 electrodes. The fact that these two
553 conditions were decoded using the same decoder calibrated in the more complex precision
554 walking task attests to the robustness of the decoding approach. Future studies should investigate
555 the applicability of the present findings to the development of brain-machine interfaces and the
556  suitability of the proposed approach to examine cortical plasticity during gait rehabilitation.

557

558

559
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588
389  Figure Captions

590
591  Figure 1: Diagram depicting the decoding methodology. The subject was fitted with a 60 channel

592 EEG cap to record brain activity and a plurality of sensors were used to record 3D kinematics and
593 footswitch data. EEG and kinematics were synchronized, preprocessed and saved. The training,
5394  testing and optimization of individual neural decoders, for each decoded gait parameter. were

395  performed off-line using cross-validation procedures.

597  Figure 2: A. Mean power spectral density (PSD in dB/Hz, in black) and 95% confidence
5398  intervals (in gray) of the grand mean of the kinematic parameters across the six subjects. B.
599  Confidence intervals (95%) of the power spectral density (PSD in dB/Hz) of the EEG recorded
600  during rest and walking of the grand mean (not shown) across the six subjects. The black lines
601 represent the PSD at rest, while the gray lines represent the PSD during walking. The inset shows
602  the ratio PSD (walking) to PSD (rest).

603

604  Figure 3: Reconstructed right leg kinematics from EEG for the “best’ (S4, A) and ‘worst’ (S5, B)
605  decoded subjects. Columns represent ankle, knee and hip joints. Each row represents comparison
606  of reconstructed (gray) and actual (black) measured linear kinematic trajectories for (x. v, 2), joint
607 angle and angular velocity time series at the optimal number of sensors.

608

609  Figure 4: Actual and predicted standardized 3D trajectories for angular velocity and joint angle of
610  the ankle for subject 54. Ankle, knee and hip trajectonies are plotted respectively in the x, y and -
611  axes. The letter “S" represent the starting point. A: trajectories of the predicted (black) vs. actual
612 (gray) angular velocities; B: trajectories of the predicted (black) vs. actual (gray) joint angles.

613
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614  Figure 5: Comparison of decoding accuracy (r) vs. SNR (dB) for the current study (N=6) with the
615  nonhuman primate study (monkeys 1 and 2) of Fitzsimons et al. (2009). Stars represent monkeys,
616 while squares represent the 6 subjects of our study.

617

618  Figure 6: Decoding accuracy from different scalp regions of interest (ROIs). The box plots show
619  the r and the SNR values for the angular velocity and the joint angle calculated with electrodes
620  situated across 5 different scalp areas: left hemisphere (LH), right hemisphere (RH), anterior
621 (PF), centro-medial (SM), anterior-occipital (PO), and with all the electrodes (ALL). Both »-
622  values and the SNR values are shown. The scalp map depicts the coverage used for each ROI and
623 the location of the electrodes in each ROI. Right and left hemispheres have been separated by the
624  mid line. Mid-line electrodes (along the line linking FZ and OZ) have been included in neither the
625  right nor the left hemisphere ROIs.

626

627 Figure 7: Spatial distribution of rzdecuding accuracies across sensors for the “best” (54) and

628  ‘worst’ (S5) decoded subjects. Scalp maps represent the spatial distribution of r”across
629  electrodes at the best lag for each parameter resulting from the training of the linear model. From
630  left to right, each column represents the scalp map of the Cartesian positions, joint angles and
631 angular velocities.

632

633  Figure 8: Decoding accuracy with the optimal number of sensors and the lowest number of
634 sensors. A) Mean (4std) Sensors Dropping Analysis (SDA) across the six subjects. B) Decoding
635  accuracy (r) obtained by using the best 34 sensors found by the SDA analysis (black) and by
636 using the highest » among the first best 16 sensors (white) for each subject. Each set of 2 bars
637  (black and white) represents the mean r-values (£std) for cach subject. The last set of two bars
638 represents the grand average across the subjects for both the optimal condition (black) and the
639  plateau condition (white). C) Number of sensors used to compute the r-values when the *best’
640  number of sensors was used (black) and up to 16 sensors were used (white) for each subject. Each

41 set of 2 bars (black and white) represents the » values (+std) of the six subjects,
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645
646
647
648
649
650

651

Figure 9. Relationship between gait variability and decoding accuracy for the angular velocity
and joint position trajectories. A) Mean (+std) of the kurtosis of the angular velocity across the
three joints (ankle, knee and hip); B) Mean (4std) of the kurtosis of the joint angle across the
three joints (ankle. knee and hip); C) Box plots of the confidence intervals (70%) for the

bootstrapped r, kurtosis paired values. The horizontal line represents the medians.
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Table 1: Comparison of decoding results in nonhuman primates with the current human study.

Spikes EEG
Monkey 1 Subject 4 (Best) Subject 5 (Worst) Mean (6 subjects)
Ankle r SNR r SHNR r SNR r SNR
X 079 £0.09 40818 0812002 | 47120867 | 0594012 | 143+£174 | 0582017 19174
Y 086 £0.11 625 + 266 0920008 | 81312048 | 0712017 | 2644334 | 061008 484 £2.11
F 044 2015 D2%148 0.92 £0.009 8031204 | 0732011 | 3042238 | 076204 42T +219
doint Angle MIA MIA 0ET £0.01 61059 | 0681011 | 2191244 | 0682008 281%£1.16
Ang Vel IS MIA 081+003 454107 | 067+008 | 21112204 | 0712008 326 £163
Knee r SNR r SHR r SHR r SNR
X 066 £0.14 196 + 184 0.6 2008 149 +066 042007 | 015+087 | 067 20.16 2228143
Y DT92043 | 4282202 0.9 2001 T21%06 | 0712014 | 28422561 | 0822007 BA1£1.88
Z 039+£013 | O52+136 | 09120005 | 77142051 | 074008 | 312+192 | 08007 473218
Jaint Angle 0842007 | 5294208 0592+001 841208 075£01 329222 | 0852004 595 £135
Ang Vel A MIA 092002 762086 | 0812008 | 4624222 | 0842005 5765166
Hip r SNR r SMR r SNR r SNR
X 062014 1152171 076004 | 3582088 | 05T X008 | 105215 | 07720M 3542147
Y 056 £0.14 1497 £192 082001 4864031 | 0724007 | 2842177 072041 28T £1.44
F 056£013 | 0B6EL1TS 0.55 £ 0.02 S5a+072 071204 29+199 | 0.811£0.086 5+£143
Joint Angle 0732011 2951195 091001 T29%06 | 06851016 | 21123196 | 08112007 5.03£1.79
Ang Vel MIA MIA 088+0006 | 6562031 | 0712043 | 277225 08+009 482+23

Correlation coefficient (r) and SNR {dB) for the prediction of different walking parameters for

Monkey 1 (Fitzsimmons et al. (2009)), the best (54) and worst (85) decoded subjects, and for the

mean across the 6 subjects in the current study. The numbers represent mean

deviation,

standard
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Table 2: Comparison of decoding results between precision and natural walking,

Subject 4 (Precision Subject 4 (Natural Subject § (Precision walking) Subject 5 (Natural
wialking) walking) walking)
Ankle r SHR " SHR r SHR r SHR
X 081+002 | 471067 | 0472097 | 155451 | 059:092 1432 1.74 077 +003 | 3.84 2 D65
¥ 092 +0009 | 8132048 | 0752096 | 3.26 £ 345 0.71 £ 0.97 2642334 083003 | 499:0.84
Fi 052+ 0008 | BOZ+04 081+ 011 | 458 =299 0.73+ 0.1 304+ 238 086+ 002 | 569055
Joint Angle 067 +0.01 6.1+ 0.59 058 + 0,13 1.M9+3 068 + 0.1 209+ 244 084+ 002 | 543 =064
Ang Vel 061+003 | 45407 D75« 007 | 352143 067 + 0.08 211+ 204 082 +007 | 4742 DGR
Knee r SNH T SNR r SNH r SHR
X 0.6 + 006 1.8 + 0.66 0.37 = 0.1 103 + 3.02 0.4+ 007 0.15 + 0.87 0.36 + 0.04 0.04 = 0.62
¥ 0.9+ 0.01 121+086 074+ 007 | 245+ 202 0.71+0.14 264 ¢ 261 082 +0.04 | 4972107
Z 091 +00056 | 7.711+051 | 0762009 | 349+ 2.44 0.74 + 0.08 ERFER LY 085002 | 563076
Joint Angle 0.92 + 0.1 BA1 2 06 062 + 0.1 4.82 « 2.82 0.3 0.1 1 2.2 0.86 + 0.02 5.93 = 0.59
Ang Vel 0.9 + 0.02 T6+086 | 0842004 | 53732142 0.61 + 0.08 462122 087 002 | 6.22=0.71
Hip r SHR t SHR r SHR r SHR
X 076 + 0.4 368 + 0.68 0.64 + 0.15 079 & 3.54 0.57 + D.0B 105+ 1.5 06T = 0.03 2.38 = 0.39
Y 082 + 0.0 486 + 0.3 0.71+0.19 2.0 & 405 0.72 + D.O7 204 177 0.79 = 0.02 4.7 = 061
z 085+ 002 | 58+0.02 081+ 009 | 4647202 011 +01 29+199 083 + 0.03 51079
Joing Angle 0.9 + 001 779+ 06 082 + 007 | 472193 066 + 0,16 211+ 316 081+004 | 4712104
Ang Vel 068 + DOD6 | 656+ 031 0.66 + 0.14 1.27 = 3.02 071+ D13 2TT+ 25 081 = 0.03 474 = 0.72

Correlation coefTicient (r) and SNR (dB) for the prediction of different walking parameters for the

best (54) and worst (55) decoded subjects under precision and natural walking. The numbers

represent mean

standard deviation.
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Table 3: Comparison of decoding accuracy (r) and weights between decoding with and without

eye- electrode.

Subject 1 Subject 2 Subject 3 Subject 4 Subject s Subject b
Ankle Teweight Tar e gt % Yeweight Y Yeweeight %r Fewreinghit %r Seweeiyght Hr
LS 0.1 a 0.1 &8 0.0 14 00t 0 0.07 5 005 EN
A o3 1.2 .05 5.1 ooy A4 o 1] 0.06 20 oor A1
i 0.0 1] 2.7 36 .18 1] 0.5 1] 0.0&6 13 0.06
Joint Angle 0.1 1] .09 (] 0.24 1] 0z AN 0.03 A4 0.06
Aing Vel 0.4 0 0.09 44 009 0 0.1 11 0.04 0 0.12
Knee Sewreight S Tewe iyght Wr Yweeight Sr Swwreight Wr fweeinht ®r wreight Wr
X o.or o 0.14 A2 0.12 135 0.6 A6 0.05 0 0.06 1.75
¥ o.oF i 11 4 ooy A 04 1 .04 25 .04 0
F 0.06 ] D13 23 0.06 13 0.9 1] 0.03 13 0.06 L]
Joint Angle 0.4 12 D.08 14 0.4 A4 ) 1] 0.04 I ooz 1]
Ang Vel 0.1 0 0.13 2.2 008 11 0.1 1 0.or 1.1 003 o
Hip Sewreighit %r Tawwe iyght %r Yeweeight W wreight Wr feweinght %r wreight %
X 0.0% 1.2 0.13 4.8 0.08 0 0.4 A2 0.06 1.78 0.04 o
¥ 0.5 1.4 01 o 004 1.3 0. 1] 0.05 0 0.12 A8
i o.or 1.2 0.11 o 004 1] o 22 0.08 14 0.0%
Joint Angle 005 1] .07 4.7 0.06 [1] 0.4 ER] 0.02 14 0.4
Ang Vel 0.06 0 0.09 ] .06 -1 0.0 ] 0.05 3 0.4

The difference in %6 between correlation coefficient (r) and the ratio between weights for the
prediction of different walking parameters for the six subjects decoded under precision walking
with and without eye-electrode are shown in table 3. Positive values mean an increase of r and
weight with eye-electrode, while negative values mean a decrease of r and weight with eye-

electrode.
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