
Articles in PresS. J Neurophysiol (July 13, 2011). doi:10.1152/jn.00104.2011 

Neural decoding of treadmill walking from non-invasive, 
2 electroencephalographic (EEG) signals 
3 
4 
5 Alessandro Presacco', Ronald Goodman`, Larry Forrestal 's and Jose Luis Contreras-Vidal" 

6 
7 
8 University of Maryland, College Park: 

9 Neural Engineering and Smart Prosthetics Research Laboratory, Department of Kinesiology, 

10 School of Public Health 

11 2Fischell Department of Bioengineering 

12 3Graduate Program in Neuroscience and Cognitive Science; 

13 

I4 University of Maryland, Baltimore: 

15 4Department of Physical Therapy & Rehabilitation Science, University of Maryland School of 

16 Medicine 

17 Veteran Affairs Medical Center, Baltimore 

18 
19 
20 Author Contributions: JLCV conceived the research; JLCV designed the experiment with 

21 assistance from LF; AP, LF and RG performed the research at the VAMC; AP and JLCV 

22 designed the decoders, and analyzed the data at UMCP; AP and JLCV wrote the paper; and LF 

23 and RG edited the manuscript. 

Correspondence to: 

Alessandro Presacco or Jose L. Contreras-Vidal 

School of Public Health, Department of Kinesiology 

SPH Building, University of Maryland, College Park 

College Park, MD 20742 

Tel: (305) 496 5457, Email: (apresacc@umd.edu; pepeum@umd.edu) 

24 

Copyright @ 2011 by the American Physiological Society. 

EFTA_R1_02036198 
EFTA02693119



25 

26 

27 

28 Abstract 

29 Chronic recordings from ensembles of cortical neurons in primary motor and somatosensory 

30 areas in rhesus macaques provide accurate information about bipedal locomotion (Fitzsimmons et 

31 al. 2009). Here we show that the linear and angular kinematics of the ankle, knee and hip joints 

32 during both normal and precision (attentive) human treadmill walking can be inferred from 

33 noninvasive scalp electroencephalography (EEG) with decoding accuracies comparable to those 

34 from neural decoders based on multiple single-unit activity (SUAs) recorded in nonhuman 

35 primates. Six healthy adults were recorded. Participants were asked to walk on a treadmill at their 

36 self-selected comfortable speed while receiving visual feedback of their lower limbs (i.e., 

37 precision walking), to repeatedly avoid stepping on a strip drawn on the treadmill belt. Angular 

38 kinematics of the left and right hip, knee and ankle joints and EEG were recorded, and neural 

39 decoders were designed and optimized using cross-validation procedures. Of note, these decoders 

40 were also used to accurately infer gait trajectories in a normal walking task that did not require 

41 subjects to control and monitor their foot placement. Our results indicate a high involvement of a 

42 fronto-posterior conical network in the control of both precision and normal walking and suggest 

43 that EEG signals can be used to study in real-time the cortical dynamics of walking and to 

44 develop brain-machine interfaces aimed at restoring human gait function. 
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53 

54 Introduction 

55 Little is known about the organization, neural network mechanisms and computations underlying 

56 the control of walking in humans (Choi and Bastian 2007). Although central pattern generators 

57 for locomotion are important in the control of walking, supra-spinal networks, including the 

58 brainstem, cerebellum and cortex, must be critical as demonstrated by the changing motor and 

59 cognitive (i.e., spatial attention) demands imposed by bipedal walking in unknown or cluttered 

60 dynamic environments (Choi and Bastian 2007; Grillner et al. 2008; Nielsen 2003; Rossignol et 

61 al. 2007). Neuroimaging studies show that rhythmic foot or leg movements recruit primary motor 

62 cortex (Christensen et al. 2001; Dobkin et al. 2004; Heuninckx et al. 2005; I leuninekx et al. 2008; 

63 Luft et al. 2002; Sahyoun et al. 2004), whereas electrophysiological investigations demonstrate 

64 electrocortical potentials related to lower limb movements (Wieser et al. 2010), as well as a 

65 greater involvement of human cortex during steady-speed locomotion than previously thought 

66 (Gwin et al. 2010a, 2010b). In this regard, studies using functional near-infrared spectroscopy 

67 (fNIRS) show involvement of frontal, premotor and supplementary motor areas during walking 

68 (Harada et al. 2009; Miyai et al. 2001; Suzuki et al. 2008; Suzuki et al. 2004). That primary 

69 scnsorimotor cortices carry information about bipedal locomotion has been directly proven by the 

70 work of Nicolelis and colleagues (Fitzsimmons et al. 2009), who demonstrated that chronic 

71 recordings from ensembles of cortical neurons in primary motor (MI) and primary somatosensory 

72 (SI) cortices can be used to predict the kinematics of bipedal walking in rhesus macaques. 

73 However, neural decoding of bipedal locomotion in humans has not yet been demonstrated. Here 

74 we compare the predictive power of neural decoders based on human scalp (noninvasive) EEG 

75 signals during treadmill walking with that reported from multiple single unit activity (SUA) in the 

76 rhesus monkey performing bipedal treadmill walking (Fitzsimmons et al. 2009). We demonstrate 

77 the feasibility of using scalp EEG to reconstruct the detailed kinematics of human walking. and 

78 the potential of the proposed approach as a new tool for inferring the cortical contributions to 

79 walking. 
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80 
81 
82 
83 
84 Materials and Methods 
85 
86 Experimental setup and procedure. Six healthy adults, aged 18-45 (3 male, 3 female) with no 

87 history of neurological disease or lower limb pathology and free of injury participated in the 

88 study after giving informed consent. The study was conducted with approved protocols from the 

89 Institutional Review Boards at the University of Maryland College Park, the University of 

90 Maryland Baltimore, and the Baltimore VA Research and Development Committee. 

91 Participants were first asked to walk on a treadmill, to establish their comfortable speed during a 

92 5-minute familiarization period that preceded the beginning of the recordings. Next, a 2-minute 

93 rest period (baseline) while standing on the treadmill was followed by 5-minutes of precision 

94 walking, when subjects were instructed to walk on the treadmill at their comfortable speed while 

95 receiving real time visual feedback (30 frames/sec) of their lower limbs through a video monitor 

96 in front of them. Subjects were told to avoid stepping on the white stripe (2 inches wide) glued 

97 diagonally on the treadmill's belt by using the monitor's video to keep track of foot placement 

98 relative to the white stripe. This increased the attentional demands during treadmill walking 

99 (Yogev-Seligman et al. 2008), a condition that can be considered to mimic walking in a novel 

100 environment or under novel conditions (e.g., after brain injury). Thus, the precision walking 

101 paradigm puts us a step closer to the actual application where patients have impaired gait function 

102 and therefore would need to rely purely or significantly on effortful attentive conscious control of 

103 gait. In an ancillary task, a subset of the participants whosc decoders showed the best and worst 

104 decoding performance in the precision walking task were also tested under normal walking 

105 conditions that did not require precise positioning of the feet nor monitoring of foot placement 

106 through a computer monitor (subjects were instructed to direct their gaze straight ahead). 

107 

108 Limb movement and EEG recordings. The three-dimensional (3D) joint kinematics of the hip, 

109 knee and ankle joints were recorded using an infrared optical motion capture system (Optotrak, 

110 Northern Digital, Ontario, Canada Q 100 Hz) with foot switch data (Koningsberg 
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111 Instrumentation, Pasadena, CA, @ 100 Hz). Precision manufactured 5 cm diameter disks 

112 (Innovative Sports Training, Chicago, IL), each embedded with three infrared diodes that formed 

113 an equilateral triangle (-3 cm sides), were affixed with adhesive and secured with foam wrap at 

114 the second sacral vertebra (S-2) and on the thigh, shank, and foot segments of each lower limb. A 

115 segmental model of the lower limbs was then determined by digitizing joint centers for the hip, 

116 knee and ankle joints of each limb. Gait kinematics were derived from the model using motion 

117 analysis software (Motion Monitor. Innovative Sports Training, Chicago. IL) and exported as 

118 ascii files containing time histories of the X, Y & Z positions, joint angular positions and joint 

119 angular velocities for the hip, knee and ankle joints of the right leg. Whole scalp 60-channel EEG 

120 (Neuroscan Synamps2 RT. Compumedics USA, Charlotte, NC, USA) and electro-ocular activity 

121 were recorded (sampling rate of 500 Hz; band-pass filtered from 0.1 to 100 Hz; right ear lobe 

122 (A2) was used as a reference) and time-locked with the movement kinematics using the 

123 footswitch signals. 

124 

125 Power spectral density analysis. The power spectral density (PSD) for the kinematic data and for 

126 each channel of the EEG recorded during rest and during the walking task for the 6 subjects was 

127 computed using the adaptive Thompson's multitaper method as implemented in Matlab's pmtm 

128 function. The time-bandwidth product for the discrete prolate spheroidal sequences used was 4 

129 and the frequency resolution 0.1 Hz. The confidence interval was set to 95% and was estimated 

130 using a chi-squared approach. In order to account for the variability of the kinematics, and for 

131 purposes of cross-validation of the decoders (see the Model performance metrics subsection). 

132 during the walking task, the data for each gait parameter (x,y,z,0,d0/ dt) were divided into 5 

133 segments (I minute each one) and the PSD was calculated for each of these 5 segments 

134 independently. The segments were then averaged across all the parameters and all the subjects 

135 leading to a grand average of the PSD. Frequencies ≤ 3 Hz accounted for > 90% of the total PSD 

136 for the kinematics. The same segmentation was applied to each channel of the EEG recorded 

137 during rest and walking conditions. The PSI) of each segment was averaged across channels and 

138 then averaged across subjects leading to a grand average. The grand averages for the kinematics 
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139 and the EEG were then smoothed with local regression using weighted linear least squares and a 

140 2nd degree polynomial model as implemented in the Matlab's loess function with a span 

141 (percentage of the total number of data points) of 10%. 

142 

143 Signal preprocessing. Figure I shows our decoding methodology. All the data analysis, decoder 

144 design and cross-validation procedures were performed off-line using custom software written in 

145 MATLAB (Mathworks Inc., Natick, MA). The most frontal electrodes (FPI, FP2, FPz) were 

146 removed off-line from all the subjects, as they are usually contaminated by eye-blinks. Temporal 

147 electrodes were also removed, as they are most susceptible to artifacts from facial and cranial 

148 muscle activity (Goncharova et al. 2003). Signals from each EEG electrode were decimated by a 

149 factor of 5 (to 100 liz), then filtered with a zero-phase, 3rd order, band-pass Butterworth filter 

150 (0.1 — 2 Hz) and normalized by subtracting their mean and dividing by their standard deviation 

151 (Bradbeny et al. 2010). Kinematic data were filtered with a zero-phase, 3rd order, band-pass 

152 Butterworth filter (0.1 — 3 Hz), as this frequency range accounted for 90% of the signal power. 

153 

154 Decoding method. A time-embedded (10 lags, corresponding to 100 ms in the past) linear Wiener 

155 filter (Bradberry et al. 2010; Carmena et al. 2003; Fitzsimmons et al. 2009) was independently 

156 designed, optimized, and cross-validated for each extracted gait parameter. The linear model was 

157 given by: 

158 
N 

159 y(t)=a+EEkr 1„(t-k)+e(t) 
k-C 

160 

161 where y(t)is the gait parameter measured (x,y,z,0,01dOtime series representing the linear 

162 and angular kinematics, and their time derivatives, for the hip, knee and ankle joints; L and 

163 N are the number of lags and the number of electrodes, respectively:Sim — k) is the 

164 standardized voltage measured at EEG electrode n at lag time k, a and b are weights 

165 obtained through multiple linear regression and e(t) is the residual error. The parameters of the 
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166 model were calculated using the standard GLM functions in MATLAB under the Gaussian 

167 distribution using the Matlab's linear link function. 

168 

169 Model performance metrics. In order to assess and compare the predictive power of each decoder 

170 (neural decoders were trained independently for each subject, and each decoded parameter), a 5-

171 fold cross validation procedure; i.e., 5 distinct sets of test data that were not used to train the 

172 decoder were employed for testing purposes. That is, the data recorded during the 5 minutes of 

173 the walking task were divided into 5 segments (I minute each one). Four segments were used for 

174 training, while the remaining segment was used for testing the model. This procedure was 

175 repeated for all the possible combinations. The Pearson correlation coefficient ( r ) was calculated 

176 between the known measured signal and the predicted decoder's output as follows: 

177 cov(x, 1) 
r(x,.".x) — 

178 Crab

179 where x is the actual measured parameter, z is the prediction of that parameter and crx and 

180 cri  are the standard deviations of x and X respectively. 

181 The SNR (signal to noise ratio) was calculated according to Fitzsimmons et al. (2009). 

182 (  Var(x) 
SNR(x,i)=10logio ) 

183 MSE(1) 

184 
185 where the variance (Var) of the actual measured parameter (signal x) was calculated by 

186 subtracting out the mean of the signal, then squaring and averaging the amplitude. The noise or 

187 error ( s ) was the difference between the predicted and actual measured signal. The mean squared 

188 error (MSE) was calculated by squaring the difference, then averaging to get the mean squared 

189 error (MSE), or the power of the noise. The ratio between Var(x) and MSE(1) was convened 

190 into a decibel (dB) scale. A SNR with a value of "0" means that the signal and the noise are 

191 equally present in the reconstructed kinematic parameter. A SNR < 0 (poor prediction) indicates a 

192 noisy reconstruction, while a SNR > 0 (good prediction) indicates a high-quality reconstruction of 

193 the signal. 
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194 

195 Sensor dropping analysis. A sensor dropping analysis (SDA) was used to evaluate the 

196 importance of groups of sensors of different sizes to decoding accuracy (e.g., Carmena et al. 

197 2003; Fitzsimmons et al. 2009). First, decoder models were trained by using each lag of each 

198 sensor (one lag at a time) with the above mentioned 5-fold cross validation procedure. In order to 

199 rank the sensors, two different methods were then used based on which kinematic parameter was 

200 to be decoded. For the joint angle (0) and the angular velocity (d0/dt) the sensors were ranked 

201 based on the maximum value of the correlations calculated at each lag. For the Cartesian 

202 positions (x, y, z) reconstructions, the sensors were ranked according to the following sensor 

203 sensitivity curve equation (Bradberry et al. 2010): 

204 
L  

205 R — —Z c2 + C2 
tals + 206 L +I 1. 0

207 where L is the number of lags, R., is the rank of sensor n and c are the best correlation 

208 coefficients for each Cartesian position (x,y,z). These procedures were followed for all the 45 

209 sensors used for decoding after removing the most prefrontal and temporal electrodes. The best 

210 34 and 16 sensors out of the 45 sensors ranked were then used for training and testing the 

211 decoders for each kinematic parameter extracted. 

212 

213 Decoding kinematics by regions of interest (1101). In order to assess the contribution to the 

214 decoding of each scalp area, the scalp was divided into 5 major ROls: prefrontal (PF), central 

215 (SM), posterior-occipital (PO) and right (RH) and left (LH) hemispheres. The kinematics were 

216 decoded using the sensors belonging to each of these ROIs, leading to 5 different decoders for 

217 each parameter for each joint and each subject. 

218 

219 Scalp Maps. To visualize the relative contributions of scalp regions to the reconstruction of the 

220 position (x,y,z), joint angle (0) and the angular velocity (d0/ dt) of the hip, knee and ankle 

221 joints, the squared correlation (i.e., variance) values c for each sensor at each lag were projected 
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222 into a time series of scalp maps (-100-0 ms in increments of 10 ms for a total of I I scalp maps). 

223 The topoplot function of EEGLAB [Delorme and Makeig 2004 (http://sccn.ucsd.edu/eeglab/)]

224 was used to plot the correlation values. The contribution of the reconstruction of each lag. for the 

225 Cartesian data, was calculated as follows (Bradberry et al. 2010): 

226 
± + c2nry +c2.: 

227 %Te =%100* 
228 C2nix + C2nay + C2lir 
229 ERA 0 

230 
231 for all i from 0 to L , where %T, is the percentage of reconstruction contribution at time lag i 

232 

233 Artifacts. To address the issue of potential mechanical artifacts introduced by motion of the EEG 

234 cap wires to the recording amplifiers (due in turn to movement of the subject) the phase-locking 

235 value (PLV) (Lachaux et al. 2000, 2002) was computed by using Morlet wavelets (Tallon-Baudry 

236 et al. 1997). We made the assumption that if the motion of the EEG wires corrupted in some way 

237 the measured EEG signals, this problem should have been observed in all the electrodes as the 

238 wires were bundled in a single connector. We were particularly interested in investigating the 

239 phase in the 1-2 Hz range, as these were the main frequencies used for decoding. We calculated 

240 the PLV between each electrode for the walking task and the corresponding kinematics recorded 

241 from the subjects. The avenged values of PLV at I and 2 Hz were avenged across the electrodes, 

242 leading to a mean value at the two frequencies of interest, and compared with the correlation 

243 values of the decoding. 

244 Analysis of potential eye movement contributions to decoding. In order to assess a potential 

245 contribution of the movement of the eyes to decoding, the decoding process was also carried out 

246 by adding the standardized vertical electrooculogram (VEOG) activity to the optimal set of 

247 electrodes used for decoding (Bradberry et al. 2011). The r-values and the regression weights 

248 were calculated in this new condition. We compared the r-values with and without the VEOG 

249 electrode by calculating the difference in % and divided the absolute value of the regression 

250 weights of the eye-electrode by the sum of the absolute value of all the regression weights of the 

251 best fold. 
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252 

253 Results 

254 Spectral signature of walking kinematics and associated high-density EEG. The power spectral 

255 density (PSD) of the gait kinematics (black) in the 0.1 — 5 Hz range along with the 95% 

256 confidence intervals (gray) are depicted in Figure 2A. The PSD shows that > 90% of the power is 

257 contained in the 0.1 — 3 Hz frequency band with a peak (26.45 dB) at —1.8 Hz. The ratio between 

258 upper and lower bounds of the confidence interval throughout all the frequencies was —6.6 d13. 

259 Confidence intervals (95%) of the PSD of the EEG at rest (black) and during precision walking 

260 (gray) are shown in Figure 2B. Notably, PSD(walking) > PSD(rest) in the delta and theta bands 

261 (-0.1 — 7 Hz) and in the low beta range (13 — 18 Hz), whereas for frequencies > 18 Hz the 

262 PSD(walking) < PSD(rest). Importantly, the suppression in the mu band observed during upper 

263 limb movements (Pfurtscheller et al. 2006) is also present during precision walking in the 8 — 12 

264 Hz range. This is clearly depicted in the plot of the ratio of PSD(walking) to PSD(rest) shown in 

265 the inset. Of note, the ratio in the 0.1 — 2 Hz range used for decoding was — 1.0 dB implying that 

266 walking did not alter the spectral signature in this low frequency band (i.e., low delta) — a finding 

267 consistent with the data reported by Gwin et al. (2010). 

268 

269 Decoding accuracy. Our EEG decoding method was able to reconstruct 3D linear and angular 

270 kinematics of the ankle, knee and hip joints with high accuracy. In order to quantify the level of 

271 accuracy, we computed the Pearson's r and the SNR between measured and predicted Cartesian 

272 positions, joint angles and angular velocities across cross-validation folds. SNR proved to be a 

273 more sensitive measure compared to r, which describes the correspondence of signal waveforms, 

274 but is insensitive to amplitude scaling and offsets. The average of the correlation values (r) 

275 between predicted and recorded kinematics for the six subjects was 0.75 (±0.1) and the signal-to-

276 noise ratio values > 0 (4.13 ± 2.03) in all but one measure (subject S6: x axis of the ankle; SNR = 

277 -0.35±1.09) confirmed the good quality of the decoded signals. Overall, correlation values across 

278 the subjects were slightly higher for joint angle (mean r = 0.78±0.1) and angular velocity (mean r 

279 0.78±0.09) than for Cartesian positions (mean rza = 0.71±0.13). Figures 3(A) and 3(B), show, 
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280 respectively, examples of the measured (black) and the reconstructed (gray) kinematics for the 

281 best (S4) and worst (S5) subjects in terms of decoding accuracy. As it can be seen, even in the 

282 case of the worst case we were able to decode the kinematic parameters with an accuracy r =0.67 

283 ± 0.09. The quality of the reconstructions of the gait trajectories in 3D space is shown in Figure 4, 

284 where an example of the actual and predicted angular velocities and joint angles, and their 

285 relative phasing. for the ankle, knee and hip, for subject S4 are depicted in 3D space as well. 

286 Table I reports the mean and the standard deviation (SD) of the correlation coefficients 

287 (r) and of the SNR (dB) values across cross validation folds for all subjects, the best (S4) and 

288 worst (S5) cases (subjects), and for intra-cortical recordings from rhesus monkey I (Fitzsimmons 

289 et al. 2009), while Figure 5 shows the distribution of the correlation coefficients (r) versus SNR 

290 (dB) for the 6 subjects and for the 2 rhesus monkeys reported in the Fitzimmons' experiment. All 

291 the decoded accuracies resulted in mean r values > 0.5 and high SNR values (all but one > 0), 

292 which were comparable with the values reported using recording spikes from rhesus monkeys 

293 (Fitzsimmons et al. 2009). In order to rule out the hypothesis that the visual feedback aided 

294 decoding, we report in Table 2 the r and SNR values of the best and worst subject decoded under 

295 natural walking conditions (no visual feedback and no stripe to step over) from our ancillary task. 

296 We used the neural decoders, previously trained using data from the precision walking task, to 

297 predict the linear and angular kinematics during normal walking. The decoding accuracies 

298 reported for the two conditions were comparable. The averages of the correlation values (r) 

299 between predicted and recorded kinematics for the precision and natural walking task for S4 were 

300 respectively 0.850.08 and 0.70.13, while for S5 were respectively 0.670.09 and 0.780.12. 

301 

302 Decoding accuracy by Region of Interest (ROD. Figure 6 depicts the mean decoding accuracy 

303 across the three joints for the 5 different ROls. For both the angular velocity and the joint angle 

304 the r and SNR values were higher when all the sensors found during the decoder optimization 

305 phase were used to decode. Decoders built based on a subset of electrodes comprising the right 

306 (RH) or left (LH) hemispheres scalp regions showed the highest r values among the selected 

307 ROls, while the subset of electrodes spanning the central scalp ROI (SM) showed the lowest r 
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308 values. In terms of SNR, the right hemisphere, prefrontal; and posterior-occipital ROIs returned 

309 the highest values, while the central scalp ROI returned the lowest values. However, statistically 

310 these differences were not significant (Kruskal-Wallis test; all comparisons at p 0.05). 

311 

312 Topography of the correlation values of the sensors. The topography of the squared correlation 

313 (i.e., variance) values of the sensors at the best lag for the best (subject S4) and worst (subject 55) 

314 decoded cases is plotted in Figure 7. These scalp maps represent the individual contribution of 

315 electrodes to decoding, that is, the spatial distribution of the EEG information about walking 

316 contained at each electrode site. From these scalp maps, it can be inferred that neural information 

317 about walking is distributed across a sparse cortical network at the macro-scale of EEG. Scalp 

318 maps of sensors most relevant to decoding of the right limb suggest that scalp areas from both 

319 hemispheres, somewhat lateralized to the right are involved during walking. Although there are 

320 some common scalp regions relevant across all the gait parameters, these scalp regions 

321 accounting for the highest variance are different across the two subjects S4 and S5. For instance. 

322 C6, FZ, P5. and AF4 electrodes are recruited across gait parameters for subject S4, whereas for 

323 subject S5 electrode locations at FC6, P6, and PO2 on the right hemisphere seemed to be relevant 

324 for decoding walking across all the kinematic parameters. There were also other important 

325 differences across subjects. For example, in subject S4 decoding of both Cartesian and angular 

326 kinematics recruited anterior scalp areas (electrode locations AF3, FZ and AF4) that in some 

327 cases extended to left frontal sites (F5). These scalp areas were absent in subject S5 who showed 

328 the lowest decoding accuracies. 

329 Of note, the scalp maps of the highest (e.g., r2 > 0.2) electrode contributions to decoding 

330 the right limb kinematics were rather sparse, particularly for subject S5, who showed rather focal 

331 recruitment of electrodes on the right hemisphere, compared with a more bilateral, but still sparse 

332 recruitment of electrodes for subject S4. In summary, a sparse network comprised of right 

333 posterior-occipital, right lateral, and bilateral anterior-frontal scalp regions appeared to contain 

334 decodable gait information. 

335 
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336 Minimum number of sensors. Given that the analysis of scalp maps relevant for decoding showed 

337 a sparse cortical network for walking, the number of sensors was further optimized using the 

338 SDA approach. As shown in Figure 8. the average number of sensors needed to achieve the 

339 reported correlations was —27-32, but on average decoding accuracy reached a phase of plateau 

340 (i.e., an improvement in DA < 5%) with 14 sensors (Figure 8A). As shown, with an average of 

341 27 sensors (i.e.. the 'best' sensors), the mean r value across the 6 subjects was 0.75 (10.06) (black 

342 bars), while selecting the best 14 sensors led to a mean r value across the 6 subjects of 0.72 

343 (±0.06) (white bars), that is, less than 5% reduction in decoding accuracy (Figure 8B). 

344 

345 Discussion 

346 Gait kinematics can be inferred from scalp EEG signals with high accuracy. This study 

347 demonstrates, for the first time, that non-invasive scalp electroencephalographic (EEG) signals 

348 can be used to decode kinematic parameters extracted during walking with high accuracy. Of note 

349 is the fact that even though we recorded EEG from 60 channels, which some investigators 

350 consider to be high-density recordings (Tononi et al. 2010), we showed that as few as 16 sensors 

351 were required for decoding with high accuracy. Encouraged by promising results achieved in 

352 previous studies carried out in our laboratory (Bradberry et al. 2008, 2009a, 2009b, 2010), we 

353 designed neural decoders by using time-domain EEG features extracted solely from the 

354 fluctuations in the amplitude (i.e. amplitude modulation or AM) in the EEG signals in the low 

355 delta frequency band (0.1 — 2 Hz). 

356 Even though Onton et al. (2005) reported significant changes in the theta band (4 — 8 Hz) 

357 reflecting increasing cognitive demands, we emphasize that our decoders were designed to use 

358 information contained in the delta band only. Moreover, our decoders were able to predict gait 

359 kinematics under two different conditions (precision walking and normal walking), which clearly 

360 differ in terms of the cognitive demands and task constraints, and thus changes in cognitive 

361 demands or modulations in higher frequency bands could not contribute to decoding. 

362 Our decoding approach proved to be robust as it prevents over-fitting (i.e., by employing 

363 separate training and testing trials) and minimize the effect of artifacts because trials with artifacts 
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364 in the training set would contribute minimally to the learning of the optimal decoder weights, and 

365 those in the test set could only reduce, not improve, the decoding accuracy (Tsuchiya et al. 2010). 

366 The fact that critical information for decoding lower limb kinematics is contained in the smoothed 

367 amplitude modulations (AM) in the lower half of the so-called delta band (i.e., 0.1 — 4 Hz) is 

368 consistent with recent EEG, electrocorticographic (ECoG), and local field potential (LFP) upper 

369 limb movement decoding studies that use the fluctuations in the amplitude of highly smoothed 

370 signals for decoding (Walden et al. 2008; Lv et al. 2010; Ball et al. 2009; Acharya et al 2010; 

371 ince et al. 2010; and Zhuang et al 2010). It is also consistent with observations by Gwin et al. 

372 (2010a), who showed that meaningful changes during walking or running occur at low 

373 frequencies (< 10 Hz) in high-density EEG. 

374 Fitzsimmons et al. (2009) were the first to prove that linear decoders could be used to 

375 reconstruct locomotion, but their experiments were based on intracortical recordings (spikes) in 

376 nonhuman primates. Ferris and colleagues have recently shown electrocortical activity coupled to 

377 gait cycle phase during treadmill walking in humans (Gwin et al. 2010b), but their study did not 

378 decode gait parameters from the EEG signals. in our experiment, 6 subjects were asked to walk at 

379 their preferred speed on a treadmill while receiving visual feedback of their lower limbs (through 

380 a video monitor at eye level in front of them), to repeatedly avoid stepping on a strip drawn on the 

381 treadmill belt — a condition we called precision walking. Even though angular kinematics were on 

382 average slightly better decoded than linear kinematics, we could not identify any parameter that 

383 stood out as the best for decoding, except for the Cartesian "x" parameters which showed a lower 

384 decoding performance overall. All the kinematic parameters but "x" position were decoded with 

385 mean r values > 0.7 (mean r, = 0.67 (±0.16), mean ry = 0.77 (I-0.1), r, = 0.77 (I-0.13), rank = 0.78 

386 (±0.09), rand = 0.78 (±0.1); and no statistical difference was found among the 5 parameters (p > 

387 0.01, ANOVA). Moreover, as shown in Figure 4, the phasing relationship between ankle, knee 

388 and hip angular kinematics is preserved in the reconstructed trajectories even though the three 

389 joints were decoded independently from each other. Remarkably, as depicted in Figure 6, SNR 

390 and r values were comparable to the ones reported by Fitzsimmons et al. (2009), a result that 

391 supports the hypothesis that the EEG signals in the low delta frequency band over a large but 
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392 sparse cortical network contain decodable information that could be used to design EEG-based 

393 brain-machine interface (BMI) systems for restoration of lower limb movement. It cannot be 

394 overemphasized that the same decoders calibrated using data from the precision walking task 

395 were able to reconstruct the gait kinematics during normal walking, which did not require 

396 subjects to monitor and control foot placement and had not access to visual feedback of foot 

397 placement, thus demonstrating the robustness of our methods. 

398 

399 Scalp map analysis. Decoder optimization and scalp maps of correlations for the right limb 

400 confirmed that human walking is sub-served by a complex, distributed but sparse cortical 

401 network, in which different scalp areas over anterior, right lateral and right anterior-occipital 

402 scalp areas seem to equally contribute to the decoding, at least at the macro-scale of EEG. As we 

403 decoded the right leg only, it still remains to be seen whether this sparse network that encoded 

404 right-side lower limb kinematics would be mirrored in the case of the left leg kinematics. 

405 Our best decoded case (subject S4) showed the highest gait-related information in the 

406 bilateral anterior, and the lateral and posterior-occipital scalp areas in the right hemisphere. Of 

407 note, our worst subject (subject S5) showed a lack of anterior-frontal recruitment for decoding the 

408 right limb, which may explain the lower decoding accuracies. In fact, it is plausible that because 

409 the precision walking task presumably involves both visual attention and decision making with 

410 respect to deciding when or how best to avoid stepping in the white line drawn on the treadmill, 

411 this lack of anterior-frontal recruitment for decoding affected the overall performance. The fact 

412 that different scalp brain areas could equally contribute to the decoding is supported by the r and 

413 SNR values obtained when decoding kinematic parameters using only sensors from specific 11O1s. 

414 In fact, even though differences in terms of r and SNR were observed between the 5 selected 

415 ROIs, statistically these differences were not significant. Our observations are in agreement with 

416 the findings by Gwin et al. (2010h), who used source analysis and reported electrocortical sources 

417 in the anterior cingulate, posterior parietal and sensorimotor cortex associated with intra-stride 

418 changes in spectral power. During the end of stance, they also observed that alpha and beta band 

419 spectral power increased in or near the left/right sensorimotor and dorsal anterior cingulated 
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420 cortex. However, power increases in the left/right sensorimotor cortices were more pronounced 

421 for contralateral limb push-off than for ipsilateral limb push-off. Studies carried out using fNIRS 

422 also showed involvement of frontal. premotor and supplementary motor areas during walking 

423 (Harada et al. 2009; Miyai et al. 2001; Suzuki et al. 2008; Suzuki et al. 2004). These results 

424 support the idea that walking is represented across a plurality of cortical brain areas. 

425 

426 Minimum number of sensors. An important issue in brain-machine interface design is concerned 

427 with the minimum number of sensors necessary to achieve a reasonable decoding accuracy. As it 

428 is well-known (Alpaydin 2004), a common occurrence in machine learning is the fact that as the 

429 number of input features increases, the decoding accuracy of the predictions increases up to a 

430 certain point, after which the model becomes too complicated, over-fitting might occur and as a 

431 consequence of this fact performance decreases. Given this, we decided to compare the r values 

432 obtained with the number of sensors found in the SDA with the best r values obtained by using up 

433 to 16 sensors. Our results indicate that —14 sensors could be sufficient to decode human 

434 locomotion using EEG. 

435 

436 Variability of the kinematics and its relation with decoding accuracy. Spectral analysis of the gait 

437 kinematics showed that more than 90% of the power was retained in the 0.1 — 3 Hz range, 

438 justifying our choice to band pass filter the kinematic data within this frequency range. The 6.6 

439 dB ratio of the upper and lower confidence intervals suggested a significant variability of the 

440 kinematic parameters across the 6 subjects. This variability could be due to the fact that each 

441 subject chose his/her comfortable pace for the walking task, but also varied his/her gait speed 

442 during the task. Consistent with upper limb movement decoding studies (Bradberry et al. 2010), a 

443 negative correlation between movement variability and decoding accuracy was found when 

444 decoding gait parameters for both angular velocity and joint angle decoding (Figure 9). 

445 Specifically, the relationship between the dccoding accuracy and gait variability, as measured by 

446 the kurtosis (kurtosis = 3 implies normal distribution), for angular velocity and the joint angle 

447 was estimated. Low values of the kurtosis (-3) (Figure 9) and high decoding accuracy for both 
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448 the angular velocity and the joint angle suggest that a nomml distribution is responsible for an 

449 increase in decoding accuracy. 

450 

451 Decoding accuracy was not affected nor corrupted by eye, mechanical or EMG artifacts. The 

452 spectral analysis of the EEG showed interesting results. As in the case of the upper limbs 

453 (Pfurtscheller et al. 2006). a desynchronization during the walking task was found in the mu band 

454 (8 - 12 Hz). As reported by Gwin et al. (20I0a), PSD values during walking were generally 

455 higher than PSD values during rest (i.e., standing) at low frequencies (0.1 — 7 Hz) and in the 

456 middle beta band (13 — 18 Hz). The ratio of PSD(walking) to PSD(rest), albeit small (e.g., — IdB 

457 in the 0.1 - 2 Hz), is consistent with those observations. Moreover, Gwin et al. (2010) reported 

458 that gait-related artifacts removed from EEG signals were insubstantial when subjects walked at a 

459 slow pace (0.8m/s = 2.88 km/h). In our experiments, no subject walked faster than 2.4 km/h, thus 

460 reducing further the likelihood of mechanical artifacts. Nevertheless, it could still be argued that 

461 EEG signals measured during gross motor tasks like walking arc prone to a myriad of 

462 physiological, mechanical, and environmental artifacts that would prevent accurate measurement 

463 and analysis of cortical dynamics during treadmill walking (Gwin et al. 2010a). 1 lowever, our 

464 proposed method for reconstruction of gait parameters and additional analyses of the potential 

465 influence of artifactual components to gait decoding suggest otherwise. 

466 First, the decoding accuracies with and without inclusion of the vertical electrooculogram 

467 (VEOG) electrode were similar. For all the decoded gait parameters except for the ankle in 

468 subject 2 (S2, ry = 5.1%, r, = 9.6%), the addition of the VEOG electrode increased negligibly the 

469 decoding accuracy by a maximum of 3.1%. The contribution of VEOG in terms of regression 

470 weights was also negligible for all decoded gait parameters except for the reconstruction of limb 

471 trajectories in the ankle's z-dimension for subject 2 (S2, r = 28%). Furthermore, S2 showed the 

472 lowest r-value for the ankle (r; = 0.31±0.19), supporting the notion that eyes movements did not 

473 contribute to the high r and SNR values found in this study. Results arc reported in Table III. It is 

474 also important to point out that in the normal walking condition, subject's gaze was instructed to 

475 be maintained straight ahead. This condition is likely to be associated with significant eye 
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476 movements due to the compensation of displacements of the head during walking (and neck 

477 muscle activity). Indeed, significant eye movements have been reported during standing and 

478 walking (Gramann et al., 2010). However, two lines of reasoning argue against the potential 

479 contributions of eye movement to decoding: First, the same decoder was used to infer limb 

480 kinematics in two conditions (normal walking and precision walking) that differed in the pattern 

481 of eye movements (gaze straight ahead vs. monitoring foot placement in a monitor), and second, 

482 the correlation analysis showed that eye movements did not assist gait decoding. 

483 Second, Goncharova et al. (2003) has shown that electromyographic (EMG) and ocular 

484 artifacts do generally occur mainly at frequencies higher than 8 Hz, which is 4 times higher than 

485 our frequency cutoff of 2 Hz used for reconstruction. Moreover, Goncharova et al. (2003) 

486 reported that EMG activity was localized to the frontal and temporal electrodes in the specific 

487 frequency band we used for decoding (delta, < 4 Hz). Therefore, in our study frontal and temporal 

488 electrodes were removed from the analysis. 

489 Third, correlation values were also calculated between baseline EEG signals band-pass 

490 filtered at 0.1 — 2 Hz and gait kinematics (< 3 Hz) and compared with EEG signals acquired 

491 during walking, which we hypothesized contained relevant information about gait parameters. 

492 Indeed, our results showed that attempting to map baseline EEG signals to gait parameters 

493 resulted in extremely low decoding: as a representative example, the r and SNR values for the 

494 ankle joint angle for our best decoded subject (S4) were 0.05 I 0.07 and -15.27 I 33.27, 

495 respectively, for the baseline EEG signals, whereas decoding accuracies were high (0.87 ± 0.01 

496 and 6.1 ± 0.59 for r and SNR, respectively) when using EEG signals acquired during the walking 

497 task, confirming that EEG signals measured during walking contained detailed cortical 

498 information about gait parameters. 

499 Fourth, to rule out the presence of mechanical artifacts introduced by motion of the EEG 

500 cables or walking itself, we computed the phase-locking value (PLV) among sensors. The 

501 rationale was that potential motion artifacts due to EEG wires or the subject's motion would 

502 affect all sensors equally. To assess the phase-locking value using wavelet analysis, the 

503 significance threshold value was set based on the values calculated by Lachaux et al. (2002). In 

18 

EFTA_R1_02036215 
EFTA02693136



504 our case, since we used 6 cycles (n co) for the wavelets and 10 cycles (no.) for the integration 

505 window, the significance threshold was estimated to be 0.71. We applied such analysis to both the 

506 baseline EEG and the walking EEG conditions. Our results suggest that mechanical artifacts did 

507 not play a role in decoding. As a representative example, the mean PLVs across electrodes of our 

508 best subject (S4) for the ankle joint angle kinematic during walking were 0.55 I 0.08 at 1 Hz, 

509 0.53 t 0.05 at 2 Hz and 0.54 ± 0.06 average across 1-2 Hz (the lower bounds for gait-cycles were 

510 ≥ 1Hz). Remarkably, when the baseline EEG condition was used, the mean values across 

511 electrodes were 0.37 t 0.02 (at 1 Hz), 0.49* 0.03 (at 2 Hz) and 0.43 ± 0.01 (mean of I and 2 Hz), 

512 which were comparable to those during walking and suggesting lack of mechanical coupling due 

513 to concerted wire movement. 

514 Fifth, we note that our decoding accuracies were high independently of whether the 

515 reconstructed parameters were linear or angular gait kinematics. It is very unlikely that a (global) 

516 motion artifact would affect or influence equally both types of gait parameters. For example, 

517 mechanical artifacts due to up-down motion would be expected to affect the decoding of vertical 

518 trajectories of the hip, ankle and knee joints, but not the decoding of angular joint velocities as 

519 they arc not linearly related. Nevertheless, the motion of the center of mass (COM), which would 

520 be expected to be directly related to that of any upward/downward movement of the EEG wires 

521 due to the subject's mechanical motion was very small (sacrum's vertical movement, in meters: 

522 SI = -0.01 ± 0.015, S2 = 0.0006 ± 0.007, S3 = -0.006 ± 0.015, S4 = -0.005 ± 0.013, S5 = -0.0095 

523 * 0.016, S6 = -0.007 ± 0.012). In addition to this, decoding of angular velocities (not linearly 

524 related with the 3D translational movements of the cables or the sacrum) for the ankle, hip, and 

525 knee resulted in high decoding accuracies that were comparable to the ones of the joint angle and 

526 Cartesian positions. Furthermore, it is unlikely that the motion artifact would have been the same 

527 for both walking conditions; indeed, the fact that the same decoders were used to decode gait in 

528 both walking (precision & normal) conditions is a strong argument against the potential influence 

529 of movement artifacts to decoding. 

530 Finally, we note that the mapping of the spatial distribution of the highest contributing 

531 electrodes to decoding resulted in a sparse but distributed network lateralized to the right 
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532 hemisphere with a bilateral anterior contribution suggesting specificity of the cortical 

533 representation of the right limb's role in walking is contained in the EEG signal. Our scalp maps 

534 allowed us to map electrode locations on the scalp surface according to the maximal amount of 

535 information that they might carry about each gait parameter. Remarkably, the scalp maps were 

536 different across gait parameters; that is, the amount and type of information about gait was 

537 different across electrode sites. As noted above, the same network was used for decoding both 

538 walking conditions. 

539 Overall, these results demonstrate the feasibility of employing a noninvasive EEG-based 

540 brain-machine interface (BMI) for the restoration of gait. This view is supported by fMRI studies 

541 in which cortical activation was detected when subjects imagined themselves walking (Bakker et 

542 al. 2007, 2008; Iseki et al. 2008) and when paraplegic patients imagined foot and leg movements 

543 (Alkadhi et al. 2005; Cramer et al. 2005; Hotz-Boendennaker et al. 2008). A cortically EEG-

544 driven BMI for the restoration or rehabilitation of walking could be also used as a strategy to 

545 harness or potentiate the remaining functionality and plasticity of spinal cord circuits isolated 

546 from the brain (Behrman et al. 2006; Grasso et al. 2004; Lunenburger et al. 2006), and as a new 

547 tool for assessing the conical contributions to walking in health and disease, or to study the 

548 changes in these contributions during learning and adaptation. 

549 

550 Conclusion. We have shown the feasibility of decoding human walking under precision 

551 (attentive, requiring visually-guided foot placement) and normal (subjects's gaze was straight 

552 ahead) conditions by using scalp EEG with as few as 16 electrodes. The fact that these two 

553 conditions were decoded using the same decoder calibrated in the more complex precision 

554 walking task attests to the robustness of the decoding approach. Future studies should investigate 

555 the applicability of the present findings to the development of brain-machine interfaces and the 

556 suitability of the proposed approach to examine conical plasticity during gait rehabilitation. 

557 

558 

559 
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588 

589 Figure Captions 

590 

591 Figure I : Diagram depicting the decoding methodology. The subject was fitted with a 60 channel 

592 EEG cap to record brain activity and a plurality of sensors were used to record 3D kinematics and 

593 footswitch data. EEG and kinematics were synchronized, preprocessed and saved. The training, 

594 testing and optimization of individual neural decoders, for each decoded gait parameter, were 

595 performed off-line using cross-validation procedures. 

596 

597 Figure 2: A. Mean power spectral density (PSD in dB/Hz, in black) and 95% confidence 

598 intervals (in gray) of the grand mean of the kinematic parameters across the six subjects. B. 

599 Confidence intervals (95%) of the power spectral density (PSD in dB/Hz) of the EEG recorded 

600 during rest and walking of the grand mean (not shown) across the six subjects. The black lines 

601 represent the PSD at rest, while the gray lines represent the PSD during walking. The inset shows 

602 the ratio PSD (walking) to PSD (rest). 

603 

604 Figure 3: Reconstructed right leg kinematics from EEG for the 'best' (S4, A) and 'worst' (S5, B) 

605 decoded subjects. Columns represent ankle, knee and hip joints. Each row represents comparison 

606 of reconstructed (gray) and actual (black) measured linear kinematic trajectories for (x, y, z), joint 

607 angle and angular velocity time series at the optimal number of sensors. 

608 

609 Figure 4: Actual and predicted standardized 3D trajectories for angular velocity and joint angle of 

610 the ankle for subject S4. Ankle, knee and hip trajectories are plotted respectively in the x, y and z-

611 axes. The letter "S" represent the starting point. A: trajectories of the predicted (black) vs. actual 

612 (gray) angular velocities; B: trajectories of the predicted (black) vs. actual (gray) joint angles. 

613 
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614 Figure 5: Comparison of decoding accuracy (r) vs. SNR (dB) for the current study (N%) with the 

615 nonhuman primate study (monkeys I and 2) of Fitzsimons et al. (2009). Stars represent monkeys, 

616 while squares represent the 6 subjects of our study. 

617 

618 Figure 6: Decoding accuracy from different scalp regions of interest (ROTs). The box plots show 

619 the r and the SNR values for the angular velocity and the joint angle calculated with electrodes 

620 situated across 5 different scalp areas: left hemisphere (LH), right hemisphere (RH), anterior 

621 (PF), centro-medial (SM), anterior-occipital (PO), and with all the electrodes (ALL). Both r-

622 values and the SNR values are shown. The scalp map depicts the coverage used for each ROI and 

623 the location of the electrodes in each ROI. Right and left hemispheres have been separated by the 

624 mid line. Mid-line electrodes (along the line linking FZ and OZ) have been included in neither the 

625 right nor the left hemisphere ROIs. 

626 

627 Figure 7: Spatial distribution of r 2 decoding accuracies across sensors for the 'best' (S4) and 

628 'worst' (S5) decoded subjects. Scalp maps represent the spatial distribution of r 2 across 

629 electrodes at the best lag for each parameter resulting from the training of the linear model. From 

630 left to right, each column represents the scalp map of the Cartesian positions, joint angles and 

631 angular velocities. 

632 

633 Figure 8: Decoding accuracy with the optimal number of sensors and the lowest number of 

634 sensors. A) Mean (1std) Sensors Dropping Analysis (SDA) across the six subjects. B) Decoding 

635 accuracy (r) obtained by using the best 34 sensors found by the SDA analysis (black) and by 

636 using the highest r among the first best 16 sensors (white) for each subject. Each set of 2 bars 

637 (black and white) represents the mean ', values (±std) for each subject. The last set of two bars 

638 represents the grand average across the subjects for both the optimal condition (black) and the 

639 plateau condition (white). C) Number of sensors used to compute the r-valucs when the 'best' 

640 number of sensors was used (black) and up to 16 sensors were used (white) for each subject. Each 

641 set of 2 bars (black and white) represents the r values (±std) of the six subjects. 
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642 

643 Figure 9: Relationship between gait variability and decoding accuracy for the angular velocity 

644 and joint position trajectories. A) Mean (±std) of the kurtosis of the angular velocity across the 

645 three joints (ankle, knee and hip); B) Mean (std) of the kurtosis of the joint angle across the 

646 three joints (ankle, knee and hip); C) Box plots of the confidence intervals (70%) for the 

647 bootstrapped r, kurtosis paired values. The horizontal line represents the medians. 

648 

649 

650 

651 
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Table I : Comparison of decoding results in nonhuman primates with the current human study. 

Spikes EEG 

Monkey 1 Subject 4 (Best) Subject 6 (Worst) Mean (6 subjects) 

Ankle r SNR r SNR r SNR r SNR 

X 0.79 t 0.09 4.08 t 1.8 0.81 I 0.02 4.71 t 0.67 0.41 t 0.12 143 t 1.74 0.58 20.17 1.9 t 1.74 

Y 0.86 t 0.11 6.25 t 2.66 01210.009 8.13 30.48 0.71 t 0.17 2.64 ± 3.34 0.8 t 0.06 4.84 t 2.11 

Z 044 t 0.15 .02 t 1.48 0.92 t 0.009 8.03 t 0.4 0.73 t 0.11 3.04 t 238 0.76 t 0.1 427 t 2.19 

Joint Angle NfA NIA 0.87 t 0.01 6.1 ±0.69 0.68 t 0.11 2.19 t 2.44 0.68 t 0.08 2.81 t 1.16 

Ang Yel NIA NIA 0.813003 454 t 0.7 0.67 t 0.08 2.11 t 2.04 0.7110.08 326 3 1.63 

Knee r SNR _ r SNR r I SNR r _ SNR 

X 0.66 t 0.14 1.96 t 1.84 0.610.06 1.9 t 0.66 0410.07 0.1520.87 0.6720.16 222 t 1.43 

Y 079 t 0.13 428 t 2.02 08 t 0.01 721 t 0.6 0.71 t 0.14 2.64 t 241 0.82 t 0.07 5.11 t 1.98 

Z 0.39 I 0.13 0.62 I 1.36 0.91 10.006 7.71 t 0.51 0.74 t 048 3.12 t 1.92 0.8 t 0.07 4.73 I 1.8 

Joint Angle 0.84 t 0.07 629 t 2.06 0923001 8.41 t 0.6 0.76 t 0.1 329 t 22 0.86 t 0.04 686 t 1.36 

Ang Vel N/A N/A 04 t 0.02 7.16 t 046 041 2 0.08 4.62 t 22 044 I 046 6.76 t 1.86 

Hip r SNR r SNR r SNR r SNR 

X 0.6 t 0.14 1.15 t 1.71 0.7610.04 3.681048 OM t 0.08 1.05 t 1.5 0.77 t 0.11 3.64 t 1.47 

V 0.86 ± 0.14 1.97 t 192 0.82 t 0.01 4.86 t 0.31 0.72 ± 0.07 2.84 t 1.77 0.7±0.1 2.97 t 1.44 

Z 0.68 10.13 0.66 t 1.76 0.8530.02 6.8 t 0.72 0.71 t 0.1 2.9 3 129 0011006 521.43 

Joint Angle 0.73 t 0.11 2.96 t 1.95 0.9 1 0.01 72930.6 048 t 0.16 2.11 t 3.16 0.8110.07 5.03 t 1.79 

Ang Vel NfA N/A 0.88 I 0.006 6.56 t 021 0.71 t 0.13 2.77 12.5 0.8 10.09 4.82 t 2.3 

Correlation coefficient (r) and SNR (dB) for the prediction of different walking parameters for 

Monkey I (Fitzsimmons et al. (2009)), the best (S4) and worst (S5) decoded subjects, and for the 

mean across the 6 subjects in the current study. The numbers represent mean standard 

deviation. 
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Table 2: Co nparison of decoding results between precision and natural walking. 

Subject I (Precision 
walking) 

Subject 4 (Natural 
walking) 

Subject 5 (Precision walking) Subject 5 (Natural 
walking) 

Ankle r SNR r SNR r SNR I SNR 

X 081 2 0.02 1.71 t 0.67 0.17 . 0.17 -1.55 2 1.51 0.59 .0.12 1.431 1.71 0.77 : 0.03 324 2 0.65 

Y 0.92 .0309 8.13 2 0.48 0.75 2 0.16 32623.15 0.71 : 0.17 2.61 : 3.31 283 2 0.03 199:081 

Z 032 10.009 8.03. 0.4 0.81 : 0.11 4.58 t 2.99 0.73 .0.11 3.01 1 238 OM t 0.02 5.69 t 0.55 

Joint Angle 0.87 t 0.01 6.1 t 039 0.68 t 0.13 1.79 t 3 0.68 t 0.11 2.19 . 2.44 0.81 t 0.02 5.43 . 0.61 

Mg Vel 0.81: 0.03 454 1 0.7 0.75: 027 3.52 s 1.43 0.67 t OM 2.11 .281 082 2 0.02 1.74 . 0.68 

Knee r SNR r SNR r SNR r SNR 

X 0.6 1 0.06 131 0.66 0.372 0.11 .183: 3.02 0.4: 0.07 0.151 0.87 0.36. 0.04 0.04 : 0.62 

Y 0.9 1 021 721 .04 0.74 t 027 245 t 2.02 0.71 2 0.14 241: 241 022 . 0.01 197. 1.07 

1 0.91 : 0.005 7.71 t 0.51 0.76 . 0.09 3A9 t 244 0.71 t 0.08 3.12: 132 0.85 2 022 543. 0.76 

Joint Angle 0.92 : 0.01 8.11: 0.6 022 : 0.1 1.82 . 222 0.75 : 0.1 3.29 : 2.2 0.86 2 0.02 593. 0.59 

Mg Yet 0.9 : 0.02 7.16. 0.86 0.81. ON 5.23 1 142 021: 0.08 4.62 : 2.2 0.87 : 0.02 622. 021 

Hip r SNR r SNR r SNR r SNR 

X 0.76 : 0.01 3.68: 0.68 014 . 0.15 0.79 . 3.54 057 2 SOO 1.05 : 15 0.67 : 023 238:0.39 

Y 0.82 : 0.01 426 1 031 0.71. 0.19 23: 4.05 0.72. 0.07 2.84 t 1.77 0.79. 0.02 1.17 1 0.61 

Z 0.85 t 0.02 5810.72 021:0.09 4.64:2.02 0.71 :01 23 t 1.99 0.83 1 0.03 5.1.0.79 

Joint Angle 0.9 :0.01 7.29104 0.82 1 0.07 4.72 2 133 0.68 2 0.16 2.11 2 3.16 0.81 1 0.01 4.71 2 1.04 

Mg Vel 0.88 r 0.006 636. 0.31 0.66. 0.14 127. 3.02 0.712 0.13 2.77 1 2.5 0.81 1 0.03 1.71 1 0.72 

Correlation coefficient r) and SNR (dB) for the prediction of different walking parameters for the 

best (S4) and worst (SS) decoded subjects under precision and natural walking. The numbers 

represent mean standard deviation. 
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Table 3: Comparison of decoding accuracy (r) and weights between decoding with and without 

eye- electrode. 

Subject 1 Subject 2 Sullied 3 subject 4 Subject 5 Sobject6 

Anlde %weight 'Sr %weight 'Sr %weight %r %weight %r %weight %r %weight %r 

X 0.1 0 0.1 2.9 008 -1.4 0.08 0 007 33 005 3.1 

Y 0.03 .11 0.05 5.1 001 .1.1 0.09 0 006 2.8 0.07 .1.1 

2 0.05 0 20.7 9.6 0.18 0 0.05 0 006 1.3 006 0 

Joint Anglo 0.1 0 0.09 0 024 0 0.12 .121 0.03 -14 006 0 

Ang Vol 004 0 009 .44 009 0 0.1 -1.1 0.01 0 0.12 0 

Knee %weight 'Sr %weight 'Sr %weight %r %weight %r %weight %r %weight %r 

X 001 0 0.14 .12 0.12 -1.35 0.00 -1.6 005 0 0.06 135 

Y 0.07 0 0.11 4 007 .1 0.01 .1 0.01 24 001 0 

Z 0.06 0 0.13 23 0.06 13 0.09 0 0.03 1.3 8.06 0 

Joint Angle 0.01 12 0.08 -1.1 004 -1.1 0.09 0 0.01 0 002 0 

Ang Vol 0.1 0 0.13 .2.2 008 .1.1 0.11 .1 0.07 1.35 003 0 

Hip %weight %r %weight 'Sr %weight %r 'S weight 'Sr %weight %r %weight %r 

X 0.05 .12 0.13 .4.8 008 0 004 -1.2 0.06 138 004 0 
Y 0.05 44 0.1 I 004 .123 0.09 0 0.05 0 0.12 .1.88 

Z 0.07 .12 0.11 8 004 0 0.04 22 OA 1.4 005 0 

Joint Angle 0.05 0 007 -13 006 0 004 -1.1 002 1.4 004 0 

Ang Vol 0.06 0 009 4.5 OS .1 0.06 0 0.05 3 044 0 

The difference in % between correlation coefficient (r) and the ratio between weights for the 

prediction of different walking parameters for the six subjects decoded under precision walking 

with and without eye-electrode are shown in table 3. Positive values mean an increase of r and 

weight with eye-electrode, while negative values mean a decrease of r and weight with eye-

electrode. 
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