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Introduction 

ABSTRACT 

During reaching or drawing, the primate cortex carries information about the current and upcoming position 
of the hand. Researchers have decoded hand position. velocity. and acceleration during center-out reaching 
or drawing tasks from neural recordings acquired invasively at the microscale and mesoscale levels. Here we 
report that we can continuously decode information about hand velocity at the macroscale level from 
magnetoencephalography (MEG) data acquired from the scalp during a center-out drawing task with an 
imposed hand-cursor rotation. The grand mean (ri = 5) correlation coefficients (CCs) between measured and 
decoded velocity profiles were 0.48. 0.40. 0.38. and 0.28 for the horizontal dimension of movement and 0.32. 
0.49. 0.56, and 023 for the vertical dimension of movement where the order of the CCs indicates pre-
exposure. early-exposure. late-exposure, and post-exposure to the hand-cursor rotation. By projecting the 
sensor contributions to decoding onto whole-head scalp maps. we found that a macroscale sensorimotor 
network carries information about detailed hand velocity and that contributions from sensors over central 
and parietal scalp areas change due to adaptation to the rotated environment. Moreover, a 3-D linear 
estimation of distributed current sources using standardized low-resolution brain electromagnetic 
tomography (sLORETA) permitted a more detailed investigation into the cortical network that encodes for 
hand velocity in each of the adaptation phases. Beneficial implications of these findings include a non-
invasive methodology to examine the neural correlates of behavior on a macroscale with high temporal 
resolution and the potential to provide continuous, complex control of a non-invasive neuromotor prosthesis 
for movement-impaired individuals. 

In the last several decades, great strides have been made in 
revealing how the primate cortex may encode the current and 
upcoming position of the hand in space during reaching or drawing 
(Scott 2008). In addition to contributing to the body of neuroscientific 
knowledge, these discoveries have begun to beneficially impact 
society. Greater elucidation of the neural code for hand movement 
has served as an impetus to the development of brain-controlled 
prostheses for the movement-impaired population. Prior to the 
advent of brain-controlled prostheses, several seminal discoveries 
laid a foundation with arguably the most momentous discovery being 
that of a population vector code for the direction of hand movement in 
three-dimensions (Georgopoulos et al.. 1986: Kettner et al.. 1988). At 
the beginning of this century. researchers launched the field of brain-
controlled neuromotor prostheses with the application of the 
population vector algorithm as well as other methods to extract 
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control signals related to hand movement from neural data (Schwartz 
et al.. 2001). Researchers have demonstrated the ability to decode 
hand kinematics at the microscale from neuronal signals acquired 
with microwires or microelectrode arrays seated into small patches of 
sensorimotor cortical tissue and to use this information to drive a 
cursor or robotic arm (Wessberg et al.. 2000; Serruya et al.. 2002: 
Taylor et al.. 2002: Hochberg et al.. 2006: Santhanam et at. 2006: 
Truccolo et al., 2008: Velliste et al.. 2008: Mulliken et al., 2008). Other 
intracranial studies have analyzed neural data at the mesoscale with 
coarser spatial resolution but wider spatial extent from local field 
potential (LFP) recordings. For example, hand movement direction 
and two-dimensional trajectories have been decoded from LFPs 
(Mehring el al.. 2003. 2004; Leuthardt et al.. 2004; Rickert et at. 
2005: Scherberger et al., 2.005; Schalk et al., 2007: Pistohl et al., 2008; 
Sanchez et al., 2008). 

In the late 1990s, pioneering work on the macroscale began to 
relate scalp potentials acquired non-invasively to hand movement 
(Kelso et at, 1998: 0•Suilleabhain et al., 1999). Some recent non-
invasive studies have demonstrated the presence of a macroscale 
network that carries the neural code for detailed hand movement. For 
instance, hand movement direction has been decoded from electro-
encephalography ( EEG) and MEG data (I lam mon et al.. 2008; Walden 
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et al.. 2008). and hand position and velocity have been decoded from 
MEG data collected during continuous joystick and trackball move-
ments (Georgopoulos et al., 2005: Jerbi et al. 2007). However, with the 
exception of Hammon et al.. these non-invasive studies have 
constrained subjects to small finger and wrist movements as opposed 
to multi-joint drawing or reaching movements. Also, most impor-
tantly. the tasks employed for non-invasive decoding of hand position 
and velocity have not incorporated discrete center-out movements. 

To examine our hypothesis that hand kinematics of natural. multi-
joint, center-out movements are decodable from non-invasive neural 
signals, we aimed to continuously decode hand velocity from MEG 
data collected during a two-dimensional drawing task. Currently only 
invasive studies have continuously decoded hand velocity during 
discrete center-out movements. Since MEG coupled with our decod-
ing method facilitates the ability to examine sensor involvement on a 
macroscale with high temporal resolution, we also sought to create 
snapshots of sensor importance in a network covering multiple brain 
regions across time during adaptation to a hand-cursor rotation. 
Furthermore, we aimed to examine the importance of estimated 
current sources in the network using sLORETA to determine whether 
they corroborated non-decoding visuomotor adaptation studies that 
employed other imaging modalities like EEG (Contreras-Vidal and 
Kerick, 2004), positron emission tomography (PET) (Inoue et al.. 
2000: Ghilardi et al.. 2000; Krakauer et al.. 2004). and functional 
magnetic resonance imaging (fMRI) (Graydon et al.. 2005; Seidler et 
al., 2006). 

Materials and methods 

Experimental procedure and data collection 

The Institutional Review Board of the University of Maryland at 
College Park approved the following experimental procedure. After 
giving informed consent, five healthy, right-handed subjects drew 
center-out lines with an optic pen on a glass panel positioned in 
front of them while they lay supine with their heads in an MEG 
recording dewar located inside a magnetically shielded room in the 
Kanazawa Institute of Technology (KIT)-Maryland MEG laboratory at 
the University of Maryland (Fig. IA). Cushions were positioned in 
the dewar and under the right elbow to minimize movement of the 
head and upper limb respectively. The distance between the glass 
panel and each subject's head was adjusted for comfort (approxi-
mately 35 cm from nose tip to the center of the panel). A black 
curtain occluded the subjects' vision of their hands while visual 
feedback was provided on a screen located in front of them that 
displayed the position of the pen tip as a cursor. Subjects were 
instructed to position the pen tip in a circle (0.5 cm diameter) 
located in the middle of the screen, wait for one of four circle 
targets (03 cm diameter) to appear in the corner of the screen at 
45. 135. 225. or 315°. wait for the target to change color, and then 
draw a straight line to the target as fast as possible. The inter-trial 
delay was randomized between 2 and 2.5 s. Working space 
dimensions were a 10/ 10 cm virtual square. After 40 trials ( pre-
exposure), the cursor was rotated 60' counterclockwise (exposure). 
The exposure phase consisted of 240 trials with the early-exposure 
phase composed of the first 40 trials and the late-exposure phase 
composed of the last 40 trials. After the exposure phase, the original 
orientation of the cursor was restored, and 20 more trials were 
collected and labeled as the post-exposure phase. The number of 
trials analyzed in the pre-exposure phase was reduced from 40 to 
36 because the behavioral performance during several initial trials 
of some subjects was poor due to lack of familiarization with the 
task To maintain consistency, the number of trials analyzed in the 
early- and late-exposure phases was also reduced from 40 to 36. 

A video camera sampled the movement of the pen tip at 60 Hz. and 
whole-head MEG data were acquired from 157 channels at a sampling 

rate of 1 kHz. The MEG system used coaxial type first-order 
gradiometers with a magnetic field resolution of 4 ft/Hz" or 0.8 
(ft/cm)/ Hzu2 in the white noise region. On-line. electronic circuits 
band-pass and notch-filtered the MEG data from 1-100 Hz and 60 Hz 
respectively. 

Adaptation confirmation 

To quantitatively confirm the occurrence of adaptation. the mean 
initial directional error (IDE) was calculated across subjects for each 
phase of the task. A vector from the center location of the screen 
(home) to the position of the pen at 80 ms after the pen completely 
left the center circle determined the initial direction of the planned 
movement trajectory. The IDE was calculated as the angular difference 
between this vector and a vector extending from the home location to 
the target. Four separate t-tests were performed between the IDE in 
pre-exposure and zero. IDE in pre-exposure and early-exposure. IDE in 
pre-exposure and late-exposure. and IDE in pre-exposure and post-
exposure. 

Signal pre-processing 

Data from each MEG sensor were first standardized according to 
Eq. ( I ): 

S„[t] = salt] gn for all n from I to N ( 1) 
Slk 

where S„Iti and s„ItI are respectively the standardized and measured 
magnetic field strength of sensor n at time r, s, and SD„ are the mean 
and standard deviation of s„ respectively. and N is the number of 
sensors. The kinematic data were resampled from 60 Hz to 1 kHz by 
using a polyphase filter with a factor of 5/ 3. For computational 
efficiency. the MEG and kinematic data were then decimated from 

kHz to 100 Hz by applying a low-pass anti-aliasing filter with a cutoff 
frequency of 40 Hz and then downsampling. The best decoding results 
were obtained when both the MEG and kinematic data were 
subsequently filtered with a zero-phase. fourth-order, low-pass 
Butterworth filter with a cutoff frequency of 15 Hz. The data for 
each phase of the task were pre-processed separately. 

Decoding model 

In the subsequent analyses. we only considered hand velocity 
based on our previous work that revealed better decoding of hand 
velocity than hand position from MEG signals (Brad berry et al.. 2008). 
To continuously decode hand velocity from the MEG signals, a linear 
decoding model was used (Fig. 2) (Georgopoulos et al.. 2005): 

N L 
xitl — x(t - 11=E t bffir calt — lc] (2) 

n.1 k =0 

Yltl - y[t —11 = E E bniy.S„Ir — kj 
n-1 t=0 

(3) 

where x(rj and All are the horizontal and vertical position of the pen 
at time sample r respectively. N is the number of MEG sensors. L is the 
number of time lags, S„lt — kl is the magnetic field strength measured 
at MEG sensor n at time lag k and the b variables are coefficients 
obtained through multiple regression. By varying the number of lags 
and sensors independently in a step-wise fashion, the optimal number 
of lags (L= 20. corresponding to 200 ms) and the best sensors 
(N=62; from central and posterior scalp regions) were determined 
experimentally. The data for each phase of the task were decoded 
separately. 
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Fig I.Center-out drawing experimental setupand kinerrutin. :A; in the lust and wwnd p.Invb.asubject is shown lying with his head inside the MEG recording dewar and drawing 
with an optic pen on a sheet of glass.A black curtain used to ocdude vision of the upper limbs is additionally shown in the second panel. The third panel illuurates the subject's view 
or the computer screen where visual feedback of the pen position (cursor), center location (home). and peripheral targets was displayed. (B) The superimposed pen (black) and 
cursor :gray) paths for one representative subject confirmed the occurrence of adaptation. Dissociation between the pen (hand) and cursor (eye) movements due to hand-cursor 
rotation was evident. (C) The mean SD of the IDE calculated across subjects for each phase of the task further confirmed adaptation. 

Assessment of decoding accuracy 

M-fold cross-validation was used to assess the decoding accuracy. 
In this procedure, the data were divided into m parts (each with 

approximately 12 s of continuous data, or four trials). m — 1 parts were 
used for training, and the remaining part was used for testing. The 
procedure was considered complete when each of them combinations 
of training and testing data were exhausted. and the mean CC between 
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Fig. 2. Didactic model of the linear decoding method. The top raster plot contains time series of 62 MEG sensors extracted 100 ms prior to the current velocity sample of interest. 
Through multiple linear regression. sensor weights were computed separately for x and y velocity that transformed 11w top raster plot to the lower left and right raster plots. The 
transformed time series of the sensors were then summed to produce the reconSnucted velocity profiles (red) that overlay the measured velocity profiles (black). The upper velocity 
profiles are associated with the MEG data shown In the example (100 ms prior to the current velocity sample of interest) and the lower ones with MEG data from0 to 200 ms prior to 
the anent velocity sample of interest. 

measured and decoded hand velocity was computed across folds. Prior to 
computing the CC, the kinematic signals were smoothed with a fourth-
order, low-pass Butterworth filter with a cutoff frequency of 0.6 HL Cross-
validation was executed with m= 9 for all phases of the task except for 
post-exposure where m = 5. For Fig. 3B, standardized velocity profiles 
were computed with I% ' with s, replaced by a velocity profile. 

Sensor sensitivity curves 

A curve depicting the relationship between decoding accuracy and 
the number of sensors was computed for the x and y dimensions of 
hand velocity for each subject for each phase of the task. A similar 
method to examine this relationship has been used to analyze 
neuronal recordings (tiancliti ci al., 20114). First, for each subject 
and each phase of the task, each sensor was assigned a rank according 
to I q. '4': 

`Al 

R" Ma + 1 /
bm^kw - + bmitLY for all n from I to N 4) 

where R„ is the rank of sensor n and M is the number of folds of the 
cross-validation procedure. Second, the decoding model was iteratively 
executed with only the highest-ranked sensor, the four highest-ranked 
sensors, the seven highest-ranked sensors. etc. until all sensors were 
used. For each phase of the task the mean SD of the CCs computed 
across subjects was plotted against the number of sensors. Finally, each 
plot was fitted to a double-exponential curve. and the coefficient of 
determination. le. was calculated as a measure of the goodness of fit. 

Scalp snaps of sensor contributions 

To graphically assess the relative contributions of scalp regions to 
the reconstruction of hand velocity, the across-subject means of the b 

(from Eqs. X and ;
.l 
.) vector magnitude were projected onto a time 

series ( — 200 to 0 ms in increments of 10 ms) of scalp maps for each 
phase of the task. These spatial renderings of sensor contributions 
were produced by the topoplot function of EEG AB version 6.01b, an 
open-source MATLAB toolbox for electrophysiological data proces-
sing (Deli-nine and Maketg. 2004: 'thy wen uccd edu eegial) ), 
that performs biharmonic spline interpolation of the sensor values 
before plotting them (Sandwell. 198?). To examine which time lags 
were the most important for decoding. for each scalp map. the 
percentage of reconstruction contribution for a phase of the task was 
computed as 

N 
4)b„ + bfly 2

GTI=100%x  fa a tN   for all i from 0 to L (5) 
E E Veenk. + No 2
k=0 

where %I, is the percentage of reconstruction contribution for a scalp 
map at time lag i. 

Comparison of scalp maps across adaptation 

Right-tailed. paired t-tests determined statistically significant 
(p<0.05) changes in sensor contributions between phases of the 
task. Three contrasts between the scalp maps were computed for 
increases from baseline (pre-exposure): early-exposure - pre-expo-
sure. late-exposure - pre-exposure. and post-exposure - pre-expo-
sure: and three contrasts were computed for decreases from baseline: 
pre-exposure - early-exposure. pre-exposure - late-exposure, and 
pre-exposure - post-exposure. The resultant r scores were converted 
to z scores and then rendered onto scalp maps with the topoplot 
function of EEGLAB Mdkelg, 21.11.14) with increases and 
decreases represented with hot and cool colors respectively. 
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Conical source localization 

To better estimate the cortical sources of hand velocity encoding in 
each phase of the task, we used standardized low-resolution brain 
electromagnetic tomography (sLORETA) software version 20081104 
(Pascual-Marqui. 2002; http:kwww.uzh.ch. keyinst/loretatilm). 
sLORETA computes instantaneous. 3-D linear, distributed and discrete 
solutions for the MEG/EEG inverse problem, which compare well with 
respect to linear inverse algorithms like minimum norm solution. 
weighted minimum norm solution, and weighted resolution optimi-
zation (Pascual-Maryut. 2002). These solutions are computed within a 
three-shell spherical head model that uses a lead field computed with 
a boundary element method applied to the MNI52 template (Fuchs et 
al.. 2002). The head model includes scalp. skull, and brain compart-
ments. The brain compartment is restricted to the conical matter of a 
head model co-registered to the Talairach brain atlas (Talairach and 
Tournoux. 1988). This compartment includes 6239 voxels at 5 mm 
resolution with each voxel containing a current dipole representing 
the integrated activity within the corresponding spatial vicinity. The 
sensor coordinates of the MEG helmet that were entered into sLORETA 
had been previously measured in the KIT-Maryland MEG laboratory. 

To identify sources that were sensitive to velocity encoding, we 
found the sources that best correlated with the most meaningful 
sensors from the decoding analysis using the following method. Pre-
processed MEG signals from all 157 channels for each subject and each 
phase of the task were fed to sLORETA to estimate current sources. 
These MEG signals had been pre-processed in the same manner as for 
decoding: standardized. downsampled. and low-pass filtered. From 
the scalp map with the highest percentage of reconstruction 
contribution ( — 100 ms). the fifteen sensor weights possessing the 
highest values were selected. The CCs were then computed between 
the squared time series from the fifteen sensors with the 6239 time 
series from the sLORETA solutions and averaged across subjects. Each 
CC was multiplied by the magnitude of the regression weight b (from 
Fos. (2) and (3)) vector of the sensor in the correlation analysis. The 
reason that fifteen sensors were chosen for the correlation analysis 
was because of the observation that the sensor sensitivity curves 
began to plateau around fifteen sensors (Fig. 4). Next the highest 5% of 
the CCs (weighted by b) were set to the value one, and the rest of the 
CCs were set to zero. Finally these binary-thresholded CCs were 
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plotted onto an axial slice of the brain (z = 55 mm) from the Colin27 
volume (Holmes et al.. 1998). the MRI template that best illustrated 
our regions of interest. All reported coordinates of regions of interest 
are in Talairach space. 

Results 

Hand kinematics confirmed adaptation 

During early-exposure to the cursor rotation, we observed curved 
hand paths due to the subjects' effort to counteract the imposed rotation 
(Fig. IB). Hand paths became straighter in late-exposure as subjects 
adapted to the novel environment. In post-exposure, after-effects, which 
consisted of hand paths curved in the opposite direction from those in 
early-exposure, indicated that adaptation had occurred. We also 
confirmed the occurrence of adaptation quantitatively by computing 
the mean IDE across subjects for each phase of the task and comparing it 
between phases (Fig. IC). The IDE was not significantly different from 
zero in pre-exposure (two-tailed [-test: p =0.34). The IDE increased in 
early-exposure relative to pre-exposure. decreased in late-exposure 
relative to early-exposure, and increased again in post-exposure relative 
to pre-exposure (one-tailed, paired t-tests, p<0.001). 

MEG signals contained decidable hand velocity information 

We employed a linear decoding model (Fos. (2) and (3)) to 
reconstruct the horizontal (x) and vertical (y) velocity components of 
hand movement from the activity of the MEG sensors (Fig. 2). The 
mean CC of x velocity decreased during each consecutive phase of the 
adaptation task (Fig. 3A). Interestingly the mean CC of y velocity 
increased until post-exposure at which point it drastically decreased. 
In terms of individual subjects. the mean CC ranged from 023 to 0.56 
(Table I), and examples of smoothed, reconstructed hand velocity 
profiles matched the measured velocity profiles well (Fig. 38). 

Number of sensors and decoding accuracy were exponentially related 

The linear decoding model produced one weight per sensor per 
time lag: therefore, the importance of the contribution of a sensor to 
the decoding process at a particular time lag could be considered the 
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Fig. 3. Decoding accuracy for hand velocity. (A) The across-subject mean SD of the CCs between measured and decoded hand velocity profiles it plotted separately for x (horizontal. 
black) and y (vertical. white) velocity breach phase affix task. (B) Examples of smoothed and standardized measured (black) and decoded (gray) hand velocity profiles for late-
exposure exhibited high decoding accur.xy.Tbe left and right columns contain x and y velocity profiles respectively. Each row contains data fora single subject, and the CC between 
the measured and decoded velocity is listed to the left of each plot. 
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Flg.4. Decoding amirary vs. number of sensors. The top and bottom rows comma of mean s() (gray; of the CCs anon tobycts vs. the number of sensor for x 
and y velocity respectively. Columns organize the plots by phase of the task. R' values between the mean CC curve and a fitted double-exponential curve are displayed at the 
bottom of each plot. 

vector magnitude of its regression weights at that time lag. We ranked 
the sensors and reran the decoding procedure with the most 
important sensor, the four most important sensors. the seven most 
important sensors. etc. until all sensors were used. These sensor 
sensitivity curves of mean CC vs. the number of sensors fit a double-
exponential function well (R2 =0.95-1.00) (Fit:. •1). For all phases of 
the task the curves peaked then plateaued, or nearly plateaued, near 
15 sensors. 

A macroscale sensorimotor network encoded hand velocity 

To graphically assess the relative contributions of scalp regions to 
the reconstruction of hand velocity• we projected the across-subject 

means of the vector magnitudes of the sensor weights onto a time 
series (-200 to 0 ms in increments of 10 ms) of scalp maps for each 
phase of the adaptation task The scalp maps for each phase of the task 
resembled each other. so only those for pre-exposure are shown 
(Fig. SA). A network of sensors over central and posterior scalp areas 
contributed to decoding hand velocity with a salient member of the 
network over the contralateral motor area. Although the scalp maps of 
the different phases appeared similar upon visual inspection, we 
investigated the presence of statistically significant increases and 
decreases in early-, late-. and post-exposure relative to baseline (pre-
exposure). We observed notable focal differences between phases of 
the task in scalp areas over mediolateral premotor and posterior 
parietal cortices in particular (Fig. 58). To better estimate the cortical 

Table 1 
Mean and SO (in parentheses) of CCs for each subject during each phase of the visuomotor adaptation task. 

Pre Early Late Post 

X Vel Y Vel X Vet Y Vel X Vel Y Vet X Vel Y Vel 

Subject I 064 (0.09) 0.47 (036) 0.44 (QM 0.62 (0.13) 0.53 (0.13) 0.73 (0.12) 0.10 (021) -0.02 (0.13) 
Subject 2 0.45 (0.16) 029 (0.14) 0.56 (0.10) OAS (021) 0.40 (0.18) 032 (011) Q10 (007) 0.37 (0.13) 
Subject 3 0.48 (0.14) 023 (021) 046 (0.16) 053(0.18) 0.49 (0121 0.63 (024) 042 (0.16) 026 (0.14) 
Subject 4 0.60 (0.08) 0.33 (022) 021 (0.20) 023 (0.11) 021 (0.111) 0.44 (015) 035 (0.07) 0.46 (0.13) 
Subject 5 0.17 (021) 026 (0.30) 026 (0.13) 0.56 (0.14) 024 (015) 0.47 (022) 0.17 (0.32) 0.02 (0.13) 
Grand mean 0.48 (0.15) 032(008) 0.40 (0.121 0.49 (0.13) 038 (0.12) 036 (OLIO) 028 (0.17) 023 (0.17) 
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100 ms, so the display of scalp maps are centered around — 100 ms. The percentage of reconstruction contribution (kr) is displayed above each scalp map. Due to space 
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exposure, and post- and pre-exposure Increased ( t ) and derreased ( ) contributions of sensors are napped to hot and cool colon respectively. IC) The estimated conical 
sources involved in hand velocity encoding during the task were represented on an axial slice from an MRI template (z= 55). The sources and their Talairach coordinates (x. y. z) 
were the PrC (-41. — 1145), PoC (-45. —17.55).51'3(30, —46.55), PCu (3. —61. 55),IPI. (-41. — 41.55).5MA (5, — 2.55). MEC (19.18.55 and —24.20.55). and SEC (19.12.55). 
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sources that gave rise to the scalp maps at — 100 ms (the highest 
percentage of reconstruction contribution), we correlated the fifteen 
best sensors with the sources estimated by sLORETA. After weighting 
the CCs by the vector magnitudes of the sensor weights, the top 5% 
were binary-thresholded and plotted on an axial slice (Fig. 5C). In all 
phases of the task the contralateral precentral gyrus (PIG) and 
postcentral gyrus ( PoG) and the ipsilateral superior parietal lobule 
(SPL) and precuneus (Ku) encoded for hand velocity. The contral-
ateral inferior parietal lobule (IPL) and ipsilateral medial frontal gyrus. 
containing the supplementary motor area (SMA). additionally 
encoded for hand velocity in all phases except pre-exposure. Finally 
the lateral premotorconex of the bilateral middle frontal gyrus (MFG) 
and ipsilateral superior frontal gyrus (SFG) ) were involved in hand 
velocity encoding only in early- and post-exposure. 

Discussion 

Our results demonstrate that we can continuously decode 
information about hand velocity from natural, multi-joint, center-
out movements from MEG signals collected during a drawing task that 
requires visuomotor adaptation to a hand-cursor rotation. With the 
systematic addition of sensors to the decoding model, the decoding 
accuracy exponentially increases before reaching a plateau. Addition-
ally, a macroscale sensorimotor network composed of central and 
posterior scalp regions encodes for hand velocity in all phases of 
adaptation, and the differences in MEG sensor importance between 
phases capture the evolution of cortical involvement during adapta-
tion. Furthermore, localization of cortical sources permits a more 
detailed investigation into the conical regions that encode for hand 
velocity in different adaptation phases. 

Hand velocity information is represented on multiple spatial scales 

Researchers have firmly established the existence of a population 
code for hand position and velocity at the microscale level via 
neuronal recordings (Georgopoulos et at.. 1986: Kettner et al.. 1988: 
van Hemmen and Schwartz. 2008). Recently, some electrocortico-
graphy (ECoG) studies demonstrated that a population code for these 
kinematic parameters also exists on a mesoscale (Schalk et al. 2007: 
Pistohl et al. 2008: Sanchez et al. 2008).The most striking result of our 
study is that a sensorimotor network on a larger spatial scale encodes 
hand kinematics during natural, multi-joint center-out movements. 
and. furthermore, does so during adaptation to a screen cursor-hand 
rotation. In sensor space, this network spans central and posterior 
sensor areas. Each MEG sensor reflects the contributions of millions of 
neurons. but yet, we can still decode information about hand velocity. 

Further regarding spatial scale, we asked whether a denser sampling 
of the scalp space could improve decoding accuracy. Since the curves of 
mean CC vs. the number of sensors reveal there to bean optimal, or near 
optimal, number of sensors less than 62 for all phases of the task 
(Fig. 4), we conclude that the addition of more sensors would not 
substantially improve the decoding accuracy. The decreased mean 
decoding accuracy and increased SD of the CC during post-exposure is 
likely due to the relatively small amount of data collected and analyzed 
during this phase of the task The overall increased mean decoding 
accuracy of y velocity during adaptation was potentially due to the fact 
that, during exposure, the 60-degree rotation had a greater affect on 
hand movement in they direction than the x direction, and thus may 
have recruited more neural resources to handle the y direction 
(Contreras-Vidal and Kerick, 2004). 

Several interesting pieces of evidence serve to validate the 
interpretation of our decoding results. First. the greatest sensor 
contributions across time lags occur at 100 ms prior to the current 
kinematic sample under reconstruction for all phases of the task 
(Fig. SA). Given that prior research has established approximately 
100 ms of neural data in the past to be important for planning the 

current movement (Mehring et al.. 2004: Paninski et al., 2003), this 
finding is not unexpected. In our previous report leading up to this 
study (Bradberry et al.. 2008). we discovered that hand velocity was 
better decoded than position (post-publication analysis: two-tailed, 
paired t-test; p<0.0001). This is another confirmatory finding, given 
that the motor cortex represents velocity better than position as has 
been demonstrated, in particular, by studies aimed at decoding 
kinematic parameters for neuroprosthetic control (Schwartz et al.. 
2001). Furthermore, the salient region of high activation over the left 
motor area is expected since subjects drew with their right hands. 

Regional comparison to non-decoding studies of visuomotor adaptation 

In sensor space, across adaptation we find significant contributions 
to hand velocity decoding over the mediolateral premotor and 
posterior parietal scalp areas with respect to pre-exposure (Fig. 58). 
Previous studies demonstrated that the parietal and premotor cortices 
are involved in a visuomotor network for reaching (Wise et al.. 1997; 
Burnod et al.. 1999), and an EEG study of visuomotor adaptation 
reported fronto-parietal shifts (Contreras-Vidal and Kerick. 2004). To 
speak more specifically about the conical areas involved with 
visuomotor adaptation and encoding of hand kinematics, we 
performed source localization (Fig. 5C). Multiple similarities exist 
between the conical regions found in our study and those of fMRI and 
PET studies of visuomotor adaptation. The left PrG. PoG. and IPL have 
been shown to be involved during visuomotor adaptation to a rotation 
of visual feedback by a IMRI studies by Graydon et al. (2005) and 
Seidler et al. (2006;. In KT studies, the right SPL has been observed to 
increase in activation during visuomotor adaptation tasks by loom. 
et al. (2000). Ghilardi et al. (20001, and Krakauer et al. (2004). Inoue 
et al.. Krakauer et al„ and Seidler et al. have also revealed an 
increase in activation of SMA/preSMA during visuomotor adapta-
tion. Finally the MFG and SFG (lateral premotor cortex) have been 
shown to be active in visuomotor adaptation by Inoue et al. and 
Seidler et al. 

Regional comparison to other decoding studies 

Regarding decoding of hand kinematics. the common involvement 
across tasks of the PrG. PoG, Sit and PCu implies that these areas form 
the core for hand velocity encoding in familiar and unfamiliar 
environments while the SMA, lateral premotor cortex. and IPL encode 
for hand velocity only during adaptation. Decoding of hand kinematics 
has been reported for PrG and PoG at a microscale (Georgopoulos 
et 4..1986; Moran and Schwartz. 1999; Wessberg et al.. 2000; Serruya 
et al.. 2002; Schwartz et al., 2004), mesoscale (Schalk et al.. 2007; 
Pistohl et al. 2008: Sanchez et al. 2008). and macroscale (Jerbi et al., 
2007). This decoding role has also been ascribed to the SPL at the 
microscale (Averbeck et al., 2005. 2009: Mulliken et al., 2008) and 
macroscale (Jerbi et al., 2007). The SMA/preSMA. lateral premotor 
cortex, and IPL have also been observed to encode movement 
kinematics (Moran and Schwartz. 1999; Schwartz et al.. 2004; Jerbi 
et al., 2007: Tankus et al.. 2009). On a slightly different note, a PET 
study that examined the control of movement velocity, discovered the 
involvement of left PrG, left PoG. right SPI... and mediolateral premotor 
cortex (turner et al., 1998). To our knowledge, we are the first to 
report that the PCu plays a role in the encoding of detailed hand 
kinematics. 

Could eye movements haw inadvertently aided hand velocity decoding? 

Unintended contributions of eye movements to the decoding of 
hand movement is a potential confound in all MEG. EEG, and ECoG 
studies, including our study. We did not experimentally control eye 
movements; however, there is reason to conclude that they do not 
subvert our interpretations. In an ancillary analysis ( Sul) *mental)? 
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Mciliocts), we ran our decoding method with the same central and 
posterior sensors after removing ocular, muscular, and cardiac 
artifacts with a method based on independent component analysis 
(ICA) (Ring and Cunt re p as-Vida I. 2005). Although there was a notable 
drop in decoding accuracy (or y velocity in pre- and post-exposure. 
there was no statistically significant difference in the resultant mean 
CCs of the subjects for any phase of the task (two-tailed, paired t-test: 
p >0.05) ( I.ihle Si ). 

Potential application to neuromotor prosthetic control 

Most studies involving non-invasive BCI systems have focused on 
1) the classification of mental tasks to form a low bandwidth 
communication channel (rfuri‘cheller et al.. :t0061 Mellinger et al_ 

2007) or 2) continuous control of a cursor by subjects who, through 
relatively lengthy biofeedback training, learn to modulate the power 
of one or more frequency bands of neural signals to control one or 
more dimensions of cursor movement (Wolpaw and Nit loi lantl, 
2004: Mcfai land er al . 2008). The lack of focus on decoding 
detailed kinematics of natural hand movements could be partly due 
to the unfounded presumption that this information cannot be 
decoded from non-invasive signals recorded from the scalp 
(I theclev awl Nit ()tells. 2001;). Despite this presumption, there 
exist several important exceptions to the lack of non-invasive 
studies aimed at developing decoding methods for controlling 
neuromotor prostheses. One study has decoded continuous joystick 
coordinates from MEG signals acquired during continuous pentagon 
drawing in the absence of visual feedback of movement (cum 
ponlos et al., 2011')). and another study has decoded information 
regarding hand tangential velocity from MEG signals acquired 
during trackball movements in two dimensions (lei In et al.. 2007). 

Our study primarily differs from the two aforementioned studies in 
that we decode continuous hand velocity from multi-joint move-
ments during a center-out drawing task that requires adaptation to a 
novel screen-cursor rotation. The center-out nature of our task is 
meaningful because it allows comparison to invasive decoding 
studies for neuromotor prostheses and emphasizes a desired 
function of the first generation of these devices. In terms of the 
visuomotor adaptation component. further investigation may pro-
vide insight into how the brain adapts to a tool such as a 
neuromotor prosthesis (I atedev el al.. :'005), and, hence, poten-
tially advance the understanding of how to achieve efficient co-
adaptation of the brain and decoding model. On a final comparative 
note, we ran each iteration of our decoding model with a relatively 
small set of training data composed of 16 (post-exposure) to 32 
(pre-. early-, and late-exposure) trials. This small amount of training 
data is meaningful because it may translate to a substantial 
reduction in the time required for a patient to gain mastery over 
the control of a neuromotor prosthesis. 

What remains to be elucidated is whether the decoding method 
presented in this report will also be applicable to EEG. which is 
better suited than MEG for an ambulatory prosthetic system. In 
terms of EEG-based decoding of movement parameters, several 
recent studies have decoded the direction of hand movement 
( I iantinon et al., 2008. Waldo. I et al.. 200S), but, to our knowledge. 
researchers have yet to report successful decoding of continuous 
hand position or velocity from EEG (a comprehensive search in 
peer-reviewed journals did not produce any studies). In the future. 
we will apply our decoding method to EEG signals to examine the 
application of this non-invasive modality to continuous, complex 
control of a neuromotor prosthesis. 

Appendix A. Supplementary data 

Supplementary data associated with this article can be found, in 
the online version. at dor 10 In I ti 1. nett, onnage.2009.06 02 ). 
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