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During reaching or drawing, the primate cortex carries information about the current and upcoming position
of the hand. Researchers have decoded hand position, velocity, and acceleration during center-out réaching
or drawing tasks from neural recordings acquired invasively at the microscale and mesoscale levels, Here we
report that we can continuously decode information about hand velocity at the macroscale level from
magnetoencephalography (MEG) data acquired from the scalp during a center-out drawing task with an
imposed hand-cursor rotation. The grand mean (n =5} correlation coefficients (CCs] between measured and
decoded velacity profiles were 0.48, 0.40, 0.33, and 0.28 for the horzontal dimension of movement and 0,32,
049, 0.56, and 0.23 for the vertical dimension of mowvement where the order of the CCs indicates pre-
exposune, early-cxposure, late-exposure, and post-exposure to the hand-cursor rotation. By projecting the
sensor contributions o decoding onto whole-head scalp maps, we found that a macroscale sensorimolor
network carries informarion about detailed hand velocity and that contributions from sensors over central
and parietal scalp areas change due to adaptation to the rotated environment. Maoreover, a 3-D linear
estimation of distributed current sources using standardized low-resolution brain electromagnetic
tomography (sLORETA) permitted a more detailed investigarion into the cortical network thar encodes for
hand velocity in each of the adaptation phases. Beneficial implications of these findings include a non-
invasive methodology to examine the newral correlates of behavior on a macroscale with high temporal
resolution and the potential to provide continuous, complex contral of a non-invasive neuromotor prosthesis
for movement-impaired individuals.
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Introduction

In the last several decades, great strides have been made in
revealing how the primate corfex may encode the current and
upcoming position of the hand in space during reaching or drawing
[Scott 2008). In addition to contributing to the body of neuroscientific
knowledge, these discoveries have begun to beneficially impact
society. Greater elucidation of the neural code for hand movement
has served as an impetus to the development of brain-controlled
prostheses for the movement-impaired population. Prior to the
advent of brain-controlled prostheses, several seminal discoveries
laid a foundation with arguably the most momentous discovery being
that of a population vector code for the direction of hand movement in
three-dimensions {Georgopoulos et al., 1986; Kettner et al., 1988 ). At
the beginning of this century, researchers launched the field of brain-
controlled neuromotor prostheses with the application of the
population vector algorithm as well as other methods to extract
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control signals related to hand movement from neural data (Schwarte
et al, 2041). Researchers have demonstrated the ability to decode
hand kinematics at the microscale from neuronal signals acquired
with microwires or microelectrode arrays seated into small patches of
sensorimotor cortical tissue and to use this information to drive a
cursor or robotic arm (Wessberg et al., 2000; Serruya et al., 2002;
laylor et al., 2002; Hochberg et al., 2006; Santhanam et al, 2006;
Truccolo et al, 2008; Velliste et al., 2008; Mulliken et al., 2008). Other
intracranial studies have analyzed neural data at the mesoscale with
coarser spatial resolution but wider spatial extent from local field
potential (LFP) recordings. For example, hand movement direction
and two-dimensional trajectories have been decoded from LFPs
(Mehring et al.. 2003, 2004; Leuthardt et al, 2004; Rickert et al
2005; Scherberger et al,, 2005; Schalk et al, 2007 ; Pistohl et al., 2008
Sanchez et al., 2008),

In the late 19905, pioneering work on the macroscale began to
relate scalp potentials acquired non-invasively to hand movement
(Kelso et al, 1998; O'Suilleabhain e al, 1999), Some recent non-
invasive studies have demonstrated the presence of a macroscale
network that carries the neural code for detailed hand movement. For
instance, hand movement direction has been decoded from electro-
encephalography (EEG) and MEG data [ Hammon et al., 2008; Waldert
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et al, 2008), and hand position and velocity have been decoded from
MEG data collected during continuous joystick and trackball move-
ments (Ceorgopoulos et al., 2005; Jerbi et al. 2007 ). However, with the
exception of Hammon et al. these non-invasive studies have
constrained subjects to small finger and wrist movements as opposed
to multi-joint drawing or reaching movements. Also, most impor-
tantly, the tasks employed for non-invasive decoding of hand position
and velocity have not incorporated discrete center-out movements.

To examine our hypothesis that hand kinematics of natuwral, muli-
Joint, center-out movements are decodable from non-invasive neural
signals, we aimed to continuously decode hand velocity from MEG
data collected during a two-dimensional drawing task. Currently anly
invasive studies have continuously decoded hand velocty during
discrete center-out movements, Since MEG coupled with our decod-
ing method facilitates the ability to examine sensor involvement on a
macroscale with high temporal resolution, we also sought to create
snapshots of sensor importance in a network covering multiple brain
regions across fime during adaptation to a hand-cursor rotation.
Furthermore, we aimed to examine the importance of estimated
current sources in the network using sSLORETA to determine whether
they corroborated non-decoding visuomotor adaptation studies that
employed other imaging modalities like EEG [Contreras-Vidal and
Kerick, 2004), positron emission tomography (PET) (Inoue et al.,
2000; Ghilardi et al., 2000; Krakauer et al. 2004), and functional
magnetic resonance imaging (MR} (CGraydon et al., 2005; Seidler et
al., 2006).

Materials and methods
Experimental procedure and data collection

The Institutional Review Board of the University of Maryland at
College Park approved the following experimental procedure, After
giving informed consent, five healthy, right-handed subjects drew
center-out lines with an optic pen on a glass panel positioned in
front of them while they lay supine with their heads in an MEG
recording dewar located inside a magnetically shielded room in the
Kanazawa Institute of Technology (KIT)-Maryland MEG laboratory at
the University of Maryland (Fiz. 1A). Cushions were positioned in
the dewar and under the right elbow to minimize movement of the
head and upper limb respectively. The distance between the glass
panel and each subject’s head was adjusted for comfort (approxi-
mately 35 cm from nose tip to the center of the panel). A black
curtain occluded the subjects’ vision of their hands while visual
feedback was provided on a screen located in front of them that
displayed the position of the pen tip as a cursor. Subjects were
instructed to position the pen tip in a circle (0.5 cm diameter)
located in the middle of the screen, wait for one of four circle
targets (0.5 cm diameter] to appear in the corner of the screen at
45, 135, 225, ar 315°, wait for the target to change color, and then
draw a straight line to the target as fast as possible. The inter-trial
delay was randomized between 2 and 2.5 5. Working space
dimensions were a 1010 cm virtual square, After 40 trials (pre-
exposure), the cursor was rotated 60" counterclockwise (exposure).
The exposure phase consisted of 240 trials with the early-exposure
phase composed of the first 40 trials and the late-exposure phase
composed of the last 40 trials. After the exposure phase, the original
orientation of the cursor was restored. and 20 more trials were
collected and labeled as the post-exposure phase. The number of
trials analyzed in the pre-exposure phase was reduced from 40 to
36 because the behavioral performance during several imitial trials
of some subjects was poor due to lack of familiarization with the
task. To maintain consistency, the number of trials analyzed in the
early- and late-exposure phases was also reduced from 40 o 36,

Avideo camera sampled the movernment of the pen tip at 60 He, and
whole-head MEG data were acquired from 157 channels at a sampling

rate of 1 kHz. The MEG system used coaxial type frst-order
gradiometers with a magnetic field resolution of 4 ft/Hz""* or 0.8
[ft/em)/Hz"'? in the white noise region. On-line, electronic circuits
band-pass and notch-filtered the MEG data from 1-100 Hz and 60 Hz
respectively.

Adaptation confirmation

To quantitatively confirm the occurrence of adaptation, the mean
initial directional error (IDE) was calculated across subjects for each
phase of the task. A vector from the center location of the screen
{home) to the position of the pen at 80 ms after the pen completely
left the center circle determined the initial direction of the planned
movement trajectory, The IDE was calculated as the angular difference
between this vectar and a vector extending from the home location to
the target. Four separate (-tests were performed between the 1DE in
pre-exposure and zero, IDE in pre-exposure and early-exposure, IDE in
pre-exposure and late-exposure, and IDE in pre-exposure and post-
EXPOSUre.

Signal pre-processing

Data from each MEG sensor were first standardized according to
Eq.(1):

5.t = ™01 =30 for alinfrom 1 to N (1)

Ml SDA"
where 5,[t] and 5,[t] are respectively the standardized and measured
magnetic field strength of sensor n at time ¢, 5; and 50;, are the mean
and standard deviation of s, respectively, and N is the number of
sensors. The kinematic data were resampled from 60 Hz to 1 kHz by
using a polyphase filter with a factor of /5. For computational
efficiency, the MEG and kinematic data were then decimated from
1 kHz 1o 100 Hz by applying a low-pass anti-aliasing filter with a cutoff
frequency of 40 Hz and then downsampling. The best decoding results
were obtained when both the MEG and kinematic data were
subsequently filtered with a zero-phase, fourth-order, low-pass
Butterworth filter with a cutoff frequency of 15 Hz, The data for
each phase of the task were pre-processed separately,

Decoding model

In the subsequent analyses, we only considered hand velocity
based on our previous work that revealed better decoding of hand
velocity than hand position from MEG signals (Eradberry et al., 2008).
To continuously decode hand velocity from the MEG signals, a linear

decoding model was used (Fig. 2) {Ceorzopoulas et al., 2005):
N

K =2t —=1]= %" % buS.t — K i2)
H=1 k=0

il L

vt =yt =1=%

n=1 k=0

By Sl — K] (3)

where x[t] and y[t] are the horizontal and vertical position of the pen
at time sample t respectively, N is the number of MEG sensors, L is the
number of time lags, 5,[t — k] is the magnetic field strength measured
at MEG sensor n at time lag k, and the b variables are coefficients
obtained through multiple regression. By varying the number of lags
and sensors independently in a step-wise fashion, the optimal number
of lags (L=20, corresponding to 200 ms) and the best sensors
{N=62; from central and posterior scalp regions) were determined
experimentally, The data for each phase of the task were decoded
separately.
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Fig. 1. Center-oul drawing experimental setup and kinematics, (A ) In the first and secand panels, a subject is shown ving with his head ingsde the MEG recarding dewar and drawing
with an optic pen on a sheet of glass. & black curtain used to scclude vision of the upper limbs is additionally shown inthe second panel. The third panel illustrates the sulyject™s view

¥

of the compuber scréen where visual feedback of the pen positkon (cursor ], center location [home), and peripheral targers was displayed. (B) The superimposed pen (black] and
gray) paths for one representative subject confirmed the occurremcoe of adaptation. Dissociation between the pen (hand | and cursor {eye] movements due to hand-cursor
rotation was evident. (C) The mean 50 of the IDE calculated acnoss subjpects for each phase of the task further confirmed adapaation.

Assessment of decoding accurocy approximately 12 s of continuous data, or four trials), m — 1 parts were

wsed for training, and the remaining part was used for testing. The

M-fold cross-validation was used to assess the decoding accuracy. procedure was considered complete when each of the m combinations

In this procedure, the data were divided into m parts (each with of training and testing data were exhausted, and the mean CC between
EFTA_R1_02036242
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Fig. 2. Didactic model of the linear decoding method. The top raster plot contains time series of 62 MEG sensors extracted 100 ms prior to the current velocity sample of interest.
Through multiple linear regression, sensor weights were computed separately for x and y velocity that iransformed the top raster plot to the lower lefi and right raster plots. The
tramsformed time series of the sensors were then summed to produce the reconstructed veloaty prafiles (red] that overlay the measured velocity profiles (black ). The upper velocity
profiles are associated with the MEG data shown in the examiple [ 100 ms prior to the current velocity sample of interest] and the bower ones with MECG data from O vo 200 ms prior to

the current velocity sample of interest,

measured and decoded hand velocity was computed across folds. Prior to
computing the CC, the kinematic signals were smoothed with a fourth-
order, low-pass Butterworth filter with a cutoff frequency of 06 Hz. Cross-
validation was executed with m =9 for all phases of the task except for
post-exposure where m=>5. For Fiz. B, standardized velocity profiles
were computed with Eq. [ 1) with s, replaced by a velocity profile.

Sensor sensitivity curves

A curve depicting the relationship between decoding accuracy and
the number of sensors was computed for the x and ¥ dimensions of
hand velocity for each subject for each phase of the task. A similar
method to examine this relationship has been wsed to analyze
neurenal recordings (Sanchez et al, 2004), First, for each subject
and each phase of the task, each sensor was assigned a rank according
1o Eq. [4):

S ¥ —
.= m 3 Y Vb’ + by forallnfrom 1o N (4

k=0 m=1

R

where R, is the rank of sensor n and M is the number of folds of the
cross-validation procedure. Second, the decoding model was iteratively
executed with only the highest-ranked sensor, the four highest-ranked
sensors, the seven highest-ranked sensors, etc. until all sensors were
used. For each phase of the task, the mean 5D of the CCs computed
across subjects was plotted against the number of sensors. Finally, each
plot was fitted to a double-exponential curve, and the coefficient of
determination, R, was calculated as a measure of the goodness of fit.

Scalp mops of sensor contributions

To graphically assess the relative contnbutions of scalp regions to
the reconstruction of hand velocity, the across-subject means of the b

{from Eqgs. (2] and (3 ]) vector magnitude were projected onto a time
series [ — 200 to 0 ms in increments of 10 ms) of scalp maps for each
phase of the task. These spatial renderings of sensar contributions
were produced by the topoplat function of EECLAR version 6.011, an
open-source MATLAB toolbox for electrophysiological data proces-
sing (Delorme and Makeig, 2004; hitp://sconucsd.edu/eeglab; ),
that performs biharmonic spline interpolation of the sensor values
before plotting them (Sandwell, 1987). To examine which time lags
were the most important for decoding, for each scalp map, the
percentage of reconstruction contribution for a phase of the task was
computed as

= 2 x
n%'| v by * + b"‘l'

S S S B
I?:D JI%"I 1|||" bnl'x + t'nl:p

for all i fromOto L (5)

T, = 100% x

where %T; is the percentage of reconstruction contribution for a scalp
map at time lag i.

Comparison of scalp maps across adaptation

Right-tailed, paired t-tests determined statistically significant
{p=0.05) changes in sensor contributions between phases of the
task. Three contrasts between the scalp maps were computed for
increases from haseline (pre-exposure): early-exposure - pre-expo-
sure, late-exposure - pre-exposure, and post-cxposure — pre-expo-
sure; and three contrasts were computed for decreases from haseline:
pre-exposure — early-exposure, pre-exposure - late-exposure, and
pre-exposure - post-exposure. The resultant [ scores were converted
to 2 scores and then rendered onto scalp maps with the topoplot
function of EEGLAB {Delorme and Maleeig, 2004) with increases and
decreases represented with hot and cool colors respectively.
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Cortical source localization

To better estimate the cortical sources of hand velocity encoding in
each phase of the task, we used standardized low-resolution brain
electromagnetic tomography (sLORETA) software version 20081104
(Pascual-Margu, 2002; http://www.uzh.ch/keyinst/loreta.htm]).
sLORETA computes instantaneous, 3-D linear, distributed and discrete
solutions for the MEG/EEG inverse problem, which compare well with
respect to linear inverse algorithms like minimum norm solution,
weighted minimum norm solution, and weighted resolution optimi-
zation (Fascual-Margui, 2002, These solutions are computed within a
three-shell spherical head model that uses a lead feld computed with
a boundary element method applied to the MNIS2 template { Fuchs el
al. 2002}, The head model includes scalp, skull, and brain compart-
ments, The brain compartment is restricted to the cortical matter of a
head model co-registered to the Talairach brain atlas [Tzlaicach and
Iournoux, 1988). This compartment includes 6239 voxels at 5 mm
resolution with each voxel containing a current dipole representing
the integrated activity within the corresponding spatial vicinity. The
sensor coordinates of the MEG helmet that were entered into sSLORETA
had been previously measured in the KIT-Maryland MEG laboratory.

To identify sources that were sensitive to velocity encoding, we
found the sources that best correlated with the most meaningful
sensors from the decoding analysis using the following method. Pre-
processed MEG signals from all 157 channels for each subject and each
phase of the task were fed to sLORETA to estimate current sources.
These MEG signals had been pre-processed in the same manner as for
decoding: standardized, downsampled, and low-pass filtered. From
the scalp map with the highest percentage of reconstruction
contnbution {— 100 ms), the ffteen sensor weights possessing the
highest values were selected. The CCs were then computed between
the squared time series from the fifteen sensors with the 6239 time
series from the sLORETA solutions and averaged across subjects. Each
CC was multiplied by the magnitude of the regression weight b [from
Feps. 127 and (3)) wector of the sensor in the correlation analysis. The
reason that fifteen sensors were chosen for the correlation analysis
was because of the observation that the sensor sensitivity curves
began to plateau around fifteen sensors {Fiz. 4). Next the highest 5% of
the CCs (weighted by b) were set to the value one, and the rest of the
CCs were set to zero. Finally these binary-thresholded CCs were

A
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plotted onto an axial slice of the brain {z= 55 mm) from the Colin27
volume [Holmes et al., 1998], the MRI template that best illustrated
our regions of interest. All reported coordinates of regions of interest
are in Talairach space.

Results
Hand kinematics confirmed adaptation

During early-exposure to the cursor rotation, we observed curved
hand paths due to the subjects” effort to counteract the imposed rotation
(Fig. 18). Hand paths became straighter in late-exposure as subjects
adapted 1o the novel environment, In post-exposure, alter-effects, which
consisted of hand paths curved in the opposite direction from those in
early-exposure, indicated that adaptation had occurred. We also
confirmed the occurrence of adaptation quantitatively by computing
the mean IDE across subjects for each phase of the task and comparing it
between phases (Fig. 1C). The IDE was not significantly different from
Zero in pre-exposure | bwo-tailed t=test; p=0.34). The IDE increased in
early-exposure relative to pre-exposure, decreased in late-exposure
relative to early-exposure, and increased again in post-exposure relative
to pre-exposure {one-tailed, paired t-tests, p=0.001).

MEG signals contained decodable hond velocity information

We employed a linear decoding model (Fgs. (2) and [(3)) to
reconstruct the horizontal (x) and vertical (v) velocity components of
hand movement from the activity of the MEG sensors (Fig, 2). The
mean CC of x velocity decreased during each consecutive phase of the
adaptation task (Fiz. 3A). Interestingly the mean CC of y welocity
increased until post-exposure at which point it drastically decreased.
In terms of individual subjects, the mean CCs ranged from 0.23 to 0.56
(Table 1), and examples of smoathed, reconstructed hand welocity
profiles matched the measured velocity profiles well (Fig. 5B).

Number of sensors and decoding accuracy were expanentially related
The linear decoding model produced one weight per sensor per

time lag; therefore, the importance of the contribution of a sensor to
the decoding process at a particular time lag could be considered the
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Fig. 3. Decoding accuracy for hand velocity, (A The across-subject mean  SDoal the CCs between measured and decoded hand vebocity profiles is plotted separately lor x ( horizontal,
black] and y (vertical, white] velocity for each phase of the task [(B) Examples of smoothed and standardized measured (black) and decoded (gray] hand velocity prafiles for late-
exposure exhitdted high decodimg accuracy. The left and right calumns contain x and y velocity profiles respectively. Each row contains data for a single subject, and the CC berween

the measured and decoded velocity is listed 1o the lelt of each plot,
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and y welocity respectively. Columns organize the plots by phase of the task. B values between the mean CC cunve and a fitted double-exponential curve are displayed at the

battom of each plat,

vector magnitude of its regression weights at that time lag. We ranked
the sensors and reran the decoding procedure with the most
important sensor, the four most important sensors, the seven most
important sensors, etc. until all sensors were used. These sensor
sensitivity curves of mean CC vs, the number of sensors fit a double-
exponential function well (F* = 0.95-1.00) (Fig. 4). For all phases of
the task, the curves peaked then plateaved, or nearly plateaued, near
13 sensors,

A macroscale sensorimotor network encoded hand velocity

To graphically assess the relative contributions of scalp regions to
the reconstruction of hand velocity, we projected the across-subject

means of the vector magnitudes of the sensor weights onto a time
series [ — 200 to 0 ms in increments of 10 ms) of scalp maps for each
phase of the adaptation task. The scalp maps for each phase of the task
resembled each other, so only those for pre-exposure are shown
(Fig. 5A) A network of sensors over central and posterior scalp areas
cantributed to decoding hand velocity with a salient member of the
network over the contralateral motor area, Although the scalp maps of
the different phases appeared similar upon visual inspection, we
investigated the presence of statistically significant increases and
decreases in early-, late-, and post-exposure relative to baseline {pre-
exposure). We observed notable focal differences between phases of
the task in scalp areas over mediolateral premotor and posterior
parietal cortices in particular {Fiz. 5B). To better estimate the cortical

Talile 1
Mean and 5D {in parentheses) of COCs for each subject during each phase of the visuomotor adaptation task,

re Early Late Prast

X Vel Y el X el ¥ Vel X Vel ¥ Vel X Vel Y Vel
Subject 1 0.64 [0.08] 047 {0.16) 0.4 (01} 062 (013) 053 (03] 0.73 (012) 10 {021} 002 (0.13)
Subject 2 0.45 (016] 0,29 (0,14 0,56 (0.10) 045 (001) 0.40 [0U18) 052 (0.21) 010 {0.07) 037 (013)
Subject 3 0,48 [0.14) 0.23 (0.21) 046 (0.16) 053 (0.18) 0,49 (012} 063 (D.24) 042 [0.16) 0.26 (0.14)
Subject 4 0,60 (0.08) 0.33 (0.22) 0.21 (0.20] 0.23 (011} 0.21 (18] 044 (D15) 0.55 {0.07) 046 (013)
Subpect 5 017 (0.21]) 0.26 {0.30) 0.26 {0.13) 0.8 (0.14] 0.24 (0.15) 047 [0.22) o7 {0.32) 00z {0.03)
Gramd mean 0.48 (015) 0.32 {0.08) 040 (0.12] 048 (013) 038 (012} 056 (010} 028 | 0.17) 023 (017)
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Late-exposure — Pre-exposure
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-T0 ms -80 ms 90 ms -100 ms -110 ms =120 ms -130 ms
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Fig. 5. Sensormatar nefvworks associated with hand velocity during visuomator adaptation. [A)] The mean vecior magnitudes of the sensor weights rom the lnear decoding model
revealed the importance of newral regions when interpoalated and propectisd onto a time series [~ 200 0 O ms in increments of 10 ms) ol scalp maps for the pre-expasure phase
(other phases were similar]. Light and dark colors represent high and low contributors respectively. The highest sensor weighting of the MEG signals led the velociny output by
100 m=, so the display of scalp maps are centered around = 100 ms The percentage of reconstruction contribution (XT) is displaved above each scalp map. Due (o space
limitatsoms, only seven of the twenty-ome scalp maps are shown, (B] The rows respectively contain the z scores of differences between carly- and pre-exposure, late- and pre-
exposure, and post- and pre-exposure, Increased [+ and devreased [ — ) contributions of sensors are mapped (o hat and coal colors respectively, (C] The estimated cortical

SOUTCEs in '.l'lllul.'d in hand welocity encoding clu ||u. he task were represented on an axial shice from an MRl template (2 = 55]. The sources and their Talairach coordinates (x, v

: | —41, — 11, 53), Pols [ — 45, — 17, 35). 5PL (30, —46, 553), PCu (3, — 61, 53%), IPL [— 41, — 41,35}, 5MA (5, — 2, 53 ), MFG ( 19, 18, 35 and — 24, 20, 55), and 5FC [ 19, 12, 535).
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spurces that gave rise to the scalp maps at — 100 ms (the highest
percentage of reconstruction contribution), we correlated the fifteen
best sensors with the sources estimated by sLORETA. After weighting
the CCs by the vector magnitudes of the sensor weights, the top 5%
were hinary-thresholded and plotted on an axial slice (Fig. 5C). In all
phases of the task, the contralateral precentral gyrus (PrG) and
postcentral gyrus (PoG) and the ipsilateral superior parietal lobule
(SPL} and precuneus (PCu) encoded for hand velocity. The contral-
ateral inferior parietal lobule (1PL) and ipsilateral medial frontal gyrus,
containing the supplementary motor area [SMA], additionally
encoded for hand velocity in all phases except pre-exposure, Finally
the lateral premotor cortex of the bilateral middle frontal gyrus (MFG)
and ipsilateral superior frontal gyrus (SFG) were involved in hand
velocity encoding only in early- and post-exposure,

Discussion

Our results demonstrate that we can continuously decode
informarion about hand velocity from natural, multi-joint, center-
out movements from MEG signals collected during a drawing task that
requires visuomotor adaptation to a hand-cursor rotation. With the
systematic addition of sensors to the decoding model, the decoding
accuracy exponentially increases before reaching a plateau. Addition-
ally, a macroscale sensorimotor network composed of central and
posterior scalp regions encodes for hand velocity in all phases of
adaptation, and the differences in MEG sensor importance between
phases capture the evolution of cortical involvement during adapta-
tion. Furthermore, localization of cortical sources permits a more
detailed investigation into the cortical regions that encode for hand
wvelocity in different adaptation phases.

Hand velocity information is represented on multiple spatial scales

Researchers have firmly established the existence of a population
code for hand position and velocity at the microscale level via
neuronal recordings (Georgopoulos et al, 1986; Kettmer ef al., 1988,
van Hemmen and Schwartz, 2008). Recently, some electrocortico-
graphy (ECoG) studies demonstrated that a population code for these
kimematic parameters also exists on a mesoscale (Schalk et al. 2007,
Pistohl et al. 2008; Sanchez et al. 2008 ). The most striking result of our
study is that a sensorimotor network on a larger spatial scale encodes
hand kinematics during natural, multi-joint center-out movements,
and, furthermore, does so during adaptation to a screen cursor-hand
rotation. In sensor space, this network spans central and posterior
sensor areas. Each MEG sensor reflects the contributions of millions of
neurons, but yet, we can still decode information about hand velocity.

Further regarding spatial scale, we asked whether a denser sampling
of the scalp space could improve decoding accuracy, Since the curves of
mean CC vs, the number of sensors reveal there to be an optimal, or near
optimal, number of sensors less than 62 for all phases of the task
(Fig. 4), we conclude that the addition of more sensors would not
substantially improve the decoding accuracy, The decreased mean
decoding accuracy and increased S0 of the CCs during post-exposure is
likely due to the relatively small amount of data collected and analyzed
during this phase of the task. The overall increased mean decoding
accuracy of ¥ velocity during adaptation was potentially due to the fact
that, during exposure, the 60-degree rotation had a greater affect on
hand movement in the y direction than the x direction, and thus may
have recruited more neural resources to handle the y direction
(Contreras-Vidal and Kenick, 2004),

Several interesting pieces of evidence serve to validate the
interpretation of our decoding results. First, the greatest sensor
contributions across time lags occur at 100 ms prior to the current
kinematic sample under reconstruction for all phases of the task
(Fig. 5A), Given that prior research has established approximately
100 ms of neural data in the past to be important for planning the

current movement (Mehring et al., 2004; Paninski et al., 2003), this
finding is not unexpected. In our previous repoart leading up to this
study (Bradberry et al. 2008), we discoverad that hand velocity was
better decoded than position {post-publication analysis: two-tailed,
paired t-test; p<0.0001). This is another confirmatory finding, given
that the motor cortex represents velocity better than position as has
been demonstrated, in particular, by studies aimed at decoding
kinematic parameters for neuroprosthetic control (Schwartz et al,
20071}, Furthermore, the salient region of high activation over the left
motor area is expected since subjects drew with their right hands.

Reginnal comparison to non-decoding studies of visuomotor adaptation

In sensor space, across adaptation we find significant contributions
to hand wvelocity decoding over the mediolateral premotor and
posterior parietal scalp areas with respect to pre-exposure (Fiz. 58),
Previous studies demonstrated that the parietal and premotor cortices
are involved in a visuomotor network for reaching (Wise et al 1997,
Burnod et al, 1999), and an EEG study of visuomotor adaptation
reported fronto-parietal shifts (Contreras-Vidal and Kerick, 2004). To
speak more specifically about the cortical areas involved with
visuomotor adaptation and encoding of hand kinematics, we
performed source localization (Fig. 5C). Multiple similarities exist
between the cortical regions found in our study and those of fMRT and
PET studies of visuomotor adaptation. The left PrG, PoG, and IPL have
been shown to be involved during visuomotor adaptation to a rotation
of visual feedback by a MMRI studies by Craydon et al. (2005) and

Sejdler et al. { 2006), In PET studies, the right SPL has been observed to
increase in activation during visuomotor adaptation tasks by Inoue
et al. (2000, Ghilardi et al. (2000), and Krakaver et al. {2004). Inoue

et al., Krakawver et al. and Seidler et al. have also revealed an
increase in activation of SMA/ preSMA during visuomotor adapta-
tion. Finally the MFG and 5FG (lateral premotor cortex) have been
shown to be active in visuomotor adaptation by Inoue et al. and
Seidler et al.

Regional comparison to other decoding studies

Regarding decoding of hand kinematics, the common involvement
across tasks of the PrG, PoG, SPL and PCu implies that these areas form
the core for hand velocity encoding in familiar and unfamiliar
environments while the SMA, lateral premotor cortex, and IPL encode
for hand velocity only during adaptation. Decoding of hand kinematics
has been reported for PrG and PoG at a microscale (Georgopoulos
et al., 1986; Moran and Schwartz, 1999; Wessberg et al., 2000; Serruya
et al., 2002; schwartz et al., 2004), mesoscale (Schalk et al, 2007,
Mstohl et al, 2008; sanchez et al. 2008), and macroscale (Jerbi et al.,
2007), This decoding role has also been ascribed to the SPL at the
microscale (Averbeck et al, 2005, 2009; Mulliken et al., 2008) and
macroscale (Jerbi er al, 20077, The SMA/preSMA, lateral premaotor
cortex, and IPL have also been observed to encode movement
kinematics (Moran and Schwartz, 1999; Schwartz et al, 2004, Jerbi
et al, 2007; Tankus et al, 20049). On a slightly different note, a PET
study that examined the control of movement velocity, discoverad the
involvement of left Pri, left PoG, right SPL, and mediolateral premotor
cortex { Turner et al., 1998), To our knowledge, we are the first to
report that the PCu plays a role in the encoding of detailed hand
kinematics.

Could eye movements have inadvertently aided hond velocity decoding?

Unintended contributions of eye movements to the decoding of
hand movement is a potential confound in all MEG, EEG, and ECoG
studies, including our study, We did not experimentally control eye
movements; however, there is reason to conclude that they do not
subvert our interpretations. In an ancillary analysis [Supplementary
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Methods], we ran our decoding method with the same central and
posterior semsors after removing ocular, muscular, and cardiac
artifacts with a method based on independent component analysis
(ICA) (Rong and Contreras=Vidal, 2006). Although there was a notable
drop in decoding accuracy for y velocity in pre- and post-exposure,
there was no statistically significant difference in the resultant mean
CCs of the subjects for any phase of the task (two-tailed, paired t-test;
p=0.05) (Table 51).

Potential apphcation to neuromotor prosthetic control

Muost studies involving non-invasive BCl systems have focused on
1) the classification of mental tasks to form a low bandwidth
communication channel {Plurtscheller et al.. 2006: Mellinger et al.,
2007) or 2) continuous control of a cursor by subjects who, through
relatively lengthy biofeedback training, learn to modulate the power
of one or mare frequency bands of neural signals to control one or
maore dimensions of cursor movement [Wolpaw and McFarland,
2004; McFarland et al, 2008), The lack of focus on decoding
detailed kinematics of natural hand movements could be partly due
to the unfounded presumption that this information cannot be
decoded from non-invasive signals recorded from the scalp
(Lebedev and Wicolelis, 2006). Despite this presumption, there
exist several important exceptions to the lack of non-imvasive
studies aimed at developing decoding methods for controlling
neuromotor prostheses. One study has decoded continuous joystick
coordinates from MEG signals acquired during continuous pentagon
drawing in the absence of visual feedback of movement (Ceorgo
poulos et al, 2005], and another study has decoded information
regarding hand tangential wvelocity from MEG signals acquired
during trackball movements in two dimensions {Jechi et al., 2007).
Our study primarily differs from the two aforementioned studies in
that we decode continuous hand velocity from multi-jeint move-
ments during a center-out drawing task that requires adaptation to a
novel screen-cursor rotation, The center-out nature of our task is
meaningful because it allows comparison o invasive decoding
studies for neuromotor prostheses and emphasizes a desired
function of the first generation of these devices. In terms of the
visuomotor adaptation component, further investigation may pro-
vide insight into how the brain adapts to a tool such as a
neuromotor prosthesis (Lebedeyv et al, 2005), and, hence, poten-
tially advance the understanding of how to achieve efficient co-
adaptation of the brain and decoding model. On a final comparative
note, we ran each iteration of our decoeding model with a relatively
small set of training data composed of 16 (post-exposure) to 32
[pre-, early-, and late-exposure ) trials. This small amount of training
data is meaningful because it may translate to a substantial
reduction in the time required for a patient to gain mastery over
the control of a neuromotor prosthesis,

What remains to be elucidated is whether the decoding method
presented in this report will also be applicable to EEG, which is
better suited than MEG for an ambulatory prosthetic system. In
terms of EEG-based decoding of movement parameters, several
recent studies have decoded the direction of hand movement
(Hammon et al., 2006, Waldert et al., 2008), but, to our knowledge,
researchers have yet to report successiul decoding of continuous
hand position or velocity from EEG (a comprehensive search in
peer-reviewed journals did not produce any studies). In the future,
we will apply our decoding method to EEG signals to examine the
application of this non-invasive modality to continuous, complex
control of a neuromotor prosthesis,

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi: 10,1006/ .neuroimage. 200906023,
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