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We consider the status of Higgs Inflation in light of the recently announced detection of B-modes in the polar-
ization of the cosmic microwave background radiation by the BICEP2 collaboration. In order for the primordial 
B-mode signal to be observable by BICEP2. the energy scale of inflation must be high, Via Az 2 x 101° GeV. 
Higgs Inflation generally predicts a small amplitude of tensor perturbations. and therefore it is natural to ask 
if Higgs Inflation might accommodate this new measurement. We find the answer is essentially no. unless one 
considers either extreme fine tuning. or possibly adding new beyond the standard model fields, which remove 
some of the more attractive features of the original idea. We also explore the possible importance of a factor that 
has not previously been explicitly incorporated, namely the gauge dependence of the effective potential used in 
calculating inflationary otisembles. e.g. ns and r. to sec if this might provide additional wiggle room. Such 
gauge effects are comparable to effects of lliggs mass uncertainties and other observables already considered in 
the analysis. and therefore they arc relevant for constraining models. But, they arc therefore too small to remove 
the apparent incompatibility between the BICEP2 observation and the predictions of Higgs Inflation. 

I. INTRODUCTION 

The theory of inflation [I-3) successfully addressed the 
twentieth century's greatest puzzles of theoretical cosmology. 
Over the past 20 years. increasingly precise measurements of 
the temperature fluctuations of the cosmic microwave back-
ground radiation (CMB) also confirmed the nearly scale in-
variant power spectrum of scalar perturbations. a relatively 
generic inflationary prediction. These many successes, how-
ever, underscored the inability to probe perhaps the most ro-
bust and unambiguous prediction of inflation, the generation 
of a background of gravity waves associated with what are 
likely enormous energy densities concomitant with inflation 
(e.g.. 

Recently. the BICEP2 collaboration reported evidence of 
B-modes in the polarization pattern of the CMB [5]. The B-
modes result from primordial gravity wave induced distortions 
at the surface of last scattering. If one assumes that these grav-
ity waves are of an inflationary origin, then the BICEP2 mea-
surement corresponds to an energy scale of inflation: 

Vitilif4 Pt (2 ± 0.2) x 1016 GeV (I) 

for a reported tensor-to-scalar ratio of r 0.2-1,:fg (using 
also the Planck collaboration's measurement of the amplitude 
of the scalar power spectrum 161). Such a high scale of in-
flation rules out many compelling models. For the purposes 
of this paper, we will assume that the observation r re- 0.2 
is valid', and we assess the impact of this measurement on a 
particular model of inflation, known as Higgs Inflation. 

• Electronic address: krauss@asu.edu 
1FJectronic address: andrew0ong@asu.edu 
I Note that the BICEP2 measurement is in tension with the upper bound. 
r C 0.11 at 95% C.L.. obtained previously by the Planck collaboration 

Higgs Inflation (HI) postulates that the Standard Model 
Higgs field and the inflaton are one in the same PI. (See also 
Ref. [8J for a recent review). This powerful assumption allows 
HI to be, in principle much more predictive than many other 
models of inflation, as by measuring the masses of the Higgs 
boson and the top quark at the electroweak scale (100 GeV), 
one might predict observables at much larger energy scales 
associated with inflation (Viiii( 4 < 1016 GeV). 

However, in practice this enhanced predictive power is elu-
sive due to a strong sensitivity to quantum effects, unknown 
physics, and other technical subtleties in the model. Specifi-
cally, one connects observables at the electroweak and infla-
tionary scales using the renormalization group flow (RG) of 
the SM couplings [9-1,1]. It is reasonable however to expect 
that there is new physics at intermediate scales, and even if the 
SM is extended only minimally to include a dark matter can-
didate [151 or neutrino masses il6-191 this new physics can 
qualitatively affect the connection between electroweak and 
inflationary observables. Moreover, penurbative unitarity ar-
guments require new physics just above the scale of inflation 
[20, 211, and in addition the unknown coefficients of dimen-
sion six operators can significantly limit the predictive power 
of HI [22]. The HI calculation also runs into various techni-
cal subtleties that arise from the requisite non-minimal grav-
itational coupling (see below) and quantization in a curved 
spacetime [23-25]. Finally, it is worth noting that HI is also at 
tension with the measured Higgs boson and top quark masses. 
and an O(2a) heavier Higgs or lighter top is required to evade 
vacuum stability problems [26]. 

Also, as we shall later discuss in detail, there is one addi-
tional source of ambiguity in calculations of HI that had not 
been fully explored. Since the quantum corrections are sig-
nificant when connecting the low energy and high energy ob-
servables, one should not work with the classical (tree-level) 
scalar potential, as is done in may models of inflation, but 
one must calculate the quantum effective potential. It is well-
known that in a gauge theory the effective potential explicitly 
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depends upon the choice of gauge in which the calculation is 
performed [27, 28), and care must be taken to extract gauge-
invariant observables from it [29-32] (see also [33, 34]). This 
fact can perhaps be understood most directly by recalling 
that the effective action is the generating functional for one-
particle irreducible Green's functions, which themselves arc 
gauge dependent [28]. In practice one often neglects this sub-
tlety, fixes the gauge at the start of the calculation, and cal-
culates observables with the effective potential as if it were a 
classical potential. In the context of finite temperature phase 
transitions. it is known that when calculated naively in this 
way, the predictions for observables depend on the choice of 
gauge used I 34—all. Because of the extreme tension between 
HI models and the data, we assess here the degree to which 
this gauge uncertainty might affect the observables in Higgs 
Inflation. We find that the gauge ambiguity introduces uncer-
tainties that are comparable to the variation of the physical 
parameters, i.e. the Higgs mass. As a result. this ambiguity 
alone cannot resuscitate moribund models. 

2, GRAVITY WAVES FROM HIGGS INFLATION 

The Standard Model Higgs potential, V(h) = Ah4/4 with 
A = O(0.1), is too steeply sloped for successful inflation. 
The measurement of the Higgs boson mf.. fixes A 0.13, 
whereas A a 1 is required to produce the observed ampli-
tude of density perturbations. In the HI model, slow roll is 
achieved by introducing a non-minimal gravitational coupling 
for the Higgs field. C = ciblibR. where (ff is the Higgs dou-
blet and R the Ricci scalar. One can remove the non-minimal 
coupling term from the Lagrangian by performing a confor-
mal transformation, go,„(x) = 51-2(x)li,„(s) where 

D2 = 1 + 2e(}141/4/1, (2) 

is the conformal factor and My is the reduced Planck mass. 
By doing so. one passes from the Jordan to the Einstein frame. 
The scalar potential in the new frame becomes 

V(h) = 2 (3) 
4 (1 + 

where we have written 4.147, = h2/ 2. At large field values. 
h > ii/p/VZ, the potential asymptotes to a constant 

Vo s AMP/4e2 (4) 

This is the appropriate regime for slow roll inflation. 
To evince the tension between Higgs Inflation and large ten-

sor perturbations we can first neglect quantum corrections to 
V(h), e.g. the running of A, as the energy scale of HI, given 
by Eq. (4), is insensitive to the quantum corrections, whereas 
the slope is more sensitive. 

Since A is fixed by the measured Higgs mass, the scalar 
potential in Eq. (3) has only one free parameter: 4. It is well-
known that to achieve sufficient e-foldings of inflation and the 
correct amplitude for the scalar power spectrum, one needs the 

non-minimal coupling to be much larger than unity. Specifi-
cally one requires (see, e.g., Ref. [81) 

4 st 47000v5 (5) 

which is e 17000 for A .c.,7 0.13. The energy scale of infla-
tion is then predicted to be 

14 :v. (0.79 x 1016 GeV)4 (6) 

leading to a tensor-to-scalar ratio, assume scalar density per-
turbations fixed by CMB observations, r •co-- 0.0036. This is 
naively incompatible with the much larger BICEP2 measure-
ment, see Eq. (I). Decrease in HI to attempt to match the 
newly measured value of %1,,r is not workable either, as set-
ting e 2000 then produces too little power in scalar density 
perturbations. 

Fundamentally then, the problem in obtaining a large value 
of r in Higgs inflationary models is that the HI potential 
asymptotes to a constant at large field values where inflation 
occurs. This flat potential then results in relatively large den-
sity perturbations, which, in order to then match observations, 
constrain the magnitude of the potential, resulting in a small 
tensor contribution. 

The question then becomes whether variations in this 
canonical HI, due to quantum effects for example, will allow 
the SM Higgs boson to the be inflaton field while also accom-
modating the large value of r. 

3. SAVING HIGGS INFLATION? 

Since it is the non-minimal coupling, e, that flattens out the 
potential at high scales, one might consider whether there are 
other ways to flatten the potential, and so avoid the require-
ment for large e values. 

One possibility proposed in this regard [I 3] involves fine 
tuning the Higgs and top masses such that the Higgs self-
coupling runs very small at the scale of inflation, A 10-4. 
This allows for relatively small e — 90 and produces r > 0.15 
that may be compatible with the BICEP measurement. It is 
impossible to entirely eliminate the need for the non-minimal 
coupling. However, as a caveat let us point out that this so-
lution only exists if the theory is first quantized in the Jordan 
frame and then moved to the Einstein frame (so-called "pre-
scription I"), and results differ if the operations are reversed 
("prescription II"). The apparent disagreement is an artifact 
of quantizing all the fields except gravity, which results in a 
different definition of the Ricci scalar in the two frames. A 
full theory of quantum gravity would probably be required to 
resolve the problem consistently between frames. Thus, it is 
not clear if the small £ "prescription I" solution is artificial. 

If one goes outside of the Standard Model, then new physics 
can affect the running of the Higgs self-coupling or anomalous 
dimension, y. For example, one may hope that A or -) acquires 
a significant running at high scales so as to give a workable 
solution consistent with both the measured scalar and tensor 
power spectra. (See. e.g., [4 1). 
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As a result, it appears that canonical HI with a non-minimal 
gravitational coupling as the only new physical input appears 
extremely difficult to reconcile with the new observation of a 
large tensor contribution from inflation. If would appear to 
be necessary to add new physics to eliminate the dependence 
on non-minimal coupling entirely and to give the Higgs ef-
fective potential a shape compatible with observations. Such 
extension of HI tend to defeat the original purpose of the idea, 
namely its predictivity, and in any case most such modifica-
tions that have been proposed [42-44) tend to retain the now 
undesirable feature of small r in any case. 

There are two options that might allow large r consistent 
with BICEP. One possibility involves tuning the Higgs poten-
tial to form a second local minimum at large scales. i.e., a false 
vacuum similar to old inflation PSI. To avoid the problems 
of old inflation, a time dependent tunneling rate is introduced. 
While most mechanisms to achieve this, however, produce a 
small value of r (46), larger can be accommodated by adding 
a new scalar with a non-minimal coupling to gravity, such that 
the Higgs field sees a time dependent Planck mass NM A 
second possibility uses a non-canonical Galileon type kinetic 
term for the Higgs field. This model yields an r =-• 0.14 [48]. 

These tuned limits, variants, and extensions of the original 
HI model leave the door slightly open for the possibility of 
connecting the Higgs with the inflation field. However, with-
out additional scalars or modification of the Higgs potential 
via some other mechanism beyond the Standard Model, the 
original scenario. i.e. Higgs Inflation with only a non-minimal 
coupling to gravity, does not appear to be compatible with the 
BICEP result. 

Before we nail the coffin shut on Higgs Inflation, however, 
there is one possible additional source of uncertainty that mer-
its further investigation. As we describe below, when one goes 
beyond the tree level, there are gauge ambiguities involved in 
the calculation of effective potentials that need to be consid-
ered when deriving constraints on parameters. 

4. GAUGE DEPENDENCE AMBIGUITIES 

When working with a gauge theory, such as the Stan-
dard Model electroweak sector, calculations typically involve 
spurious gauge dependence that cancels when physical ob-
servable arc calculated. For example, in a spontaneously 
broken Yang-Mills theory one may work in the renormaliz-
able class of gauges (RO upon augmenting the Lagrangian 
with a gauge fixing term Cgi = —G°Ga/2 where = 

(1/ 1. ,f)(0,A° - xs) where x, are the would-be 
Goldstone boson fields and F° = riv, with 711 the sym-
metry generators and vj the symmetry-breaking vacuum ex-
pectation value. (See. e.g., [33]). A corresponding Fadeev-
Popov ghost term is also added. Physical or "on-shell" quan-
tities, such as cross sections and decay rates, may be calcu-
lated penurbatively, and any dependence on the gauge fix-
ing parameter, 4f , cancels order-by-order. Unphysical or 
"off-shell" quantities, such as propagators or one-particle irre-
ducible Green's functions, may harmlessly retain the spurious 
gauge dependence. 

The Coleman-Weinberg effective action f eff and effective 
potential Vof [49) have become standard tools in the study 
of vacuum structure, phase transitions, and inflation. The 
effective action is the generating functional of one-particle 
irreducible Green's functions, and therefore it is important 
to recognize that both "off and Kt f are off-shell quantities, 
which will carry spurious gauge dependence [28]. When ap-
plying the effective potential to a problem. special care must 
be taken to extract gauge-invariant information. In particu-
lar, the Nielsen identities express the gauge invariance of the 
effective potential at its stationary points, but derivatives of 
the effective potential are not generally gauge invariant [3 I]. 
This suggests that inflationary observables, e.g. ns, r, and 
dns/dlnk, naively extracted directly from the slow roll pa-
rameters will acquire a spurious gauge dependence. 

Ideally one would like to determine the "correct" proce-
dure for calculating physical quantities like us from a given 
model in such a way that the spurious gauge dependence is 
canceled. There have been significant efforts made in this di-
rection (23. 24]. but a full gauge invariant formalism is yet 
to be developed. Here we will take a different approach that 
is more aligned with recent work on the gauge dependence 
of phase transition calculations [34, 38. 39). Specifically, 
we numerically perform the "naive" HI calculation using the 
R{ gauge effective potential and RG-improvement to assess 
the sensitivity of the inflationary observables to the spurious 
gauge dependence. 

We begin by reviewing the familiar Higgs Inflation calcu-
lation. After moving from the Jordan to the Einstein frame, 
as described in Sec. 2. the resulting action contains a non-
canonical kinetic term for the Higgs field. One cannot, in 
general, find a field redefinition that makes the kinetic term 
canonical globally [21, 50]. At this point, it is customary to 
move to the unitary 'Inge where the Higgs doublet is written 
as ch(r) = e2"1.1r 1r (0, h(x)/4 2.. Then the kinetic term 
for the radial Higgs excitation can be normalized by the field 
redefinition x(h) where 

1 3 3/2 0-12/dh.)2 
dx I dh - n2 + P (7) 2 az 

and now 112 = 1 + h2/3/1,. 
Having canonically normalized both the gravity and Higgs 

kinetic terms, the derivation of the effective potential proceeds 
along the standard lines. We calculate the RG improved. one-
loop effective potential as described in the Appendix. After 
performing the RG improvement, the parameter A that appears 
in Eq. (3) should be understood at the running coupling eval-
uated at the scale of inflation. Generally, A < 0.1 and its 
value depends upon the physical Higgs boson and top quark 
masses at the input scale. For the best fit observed values, 

125 GeV and Mt xr. 173 GeV, the coupling runs neg-
ative at h ot 101° —1012 GeV; this is the well-known vacuum 
stability problem of the Standard Model [26). Successful HI 
requires an O(2o) deviation from central values toward either 
larger Higgs boson mass or smaller top quark mass. 

Gauge dependence enters the calculation at two places: ex-
plicitly in the one-loop correction to the effective potential and 
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implicitly through the Higgs anomalous dimension upon per-
forming the RG improvement. 

To calculate the slow roll parameters. e.g. 

e = Af (W/V)21 
2 ki-v 

(8) 

the derivatives are taken with respect to x, i.e., V'(h(x)) = 
(OVI0h)(dx1dh)-1. The potential and its derivatives are 
evaluated at the field value, heath, for which the number of 
e-foldings, given by 

= i 
111V(h)h

hna dh 
(h)fl, ' (9) 

is Ai = 60. Inflation terminates at h = he„d where 
(11/1,/2)(VVV)2 = 1. 

In Fig. I we show the energy scale of inflation. 

liar= V(hrran) (10) 

as the the Higgs boson and top quark masses are varied, and 
the non-minimal coupling, t ar, few x 103, is determined to 
match the observed amplitude of scalar perturbations. This 
demonstrates that the scale of inflation is insensitive to Atif, 
varying only at the O(10-4) level. It always remains signif-
icantly below 2 x 1016 GeV, which indicates the incompat-
ibility with the BICEP2 measurement. (The corresponding 
tensor-to-scalar ratio is r r-- 0.003.) 

To illustrate the gauge dependence, we show in Fig. 2 how 
Via varies with $4e. We find that V;,,( also changes at a level 
comparable to its sensitivity to Ahr or Me as the gauge pa-
rameter deviates from the Landau gauge (‘ = 0). It is there-
fore important to consider this ambiguity for model building 
purposes. Nevertheless, the absolute change in Vim is far too 
small to reconcile HI with the BICEP2 measurement. 

Note that at larger vales of Qgt the scale of inflation appears 
to continue to decrease, but in this limit the perturbative valid-
ity of the calculation begins to break down. To resolve this is-
sue. the unphysical degrees of freedom. the Goldstone bosons 
and ghosts. should be decoupled as the unitary gauge is ap-
proached. 

Our numerical results appear consistent with the Nielsen 
identities [31, 32] which capture the gauge dependence of the 
effective potential. The relevant identity is 

[ 
a- 4 C(°' )60 
0 0 

e — rr(4, = 0 • 1 
(II) 

In the slow roll regime, the gradient of the effective potential is 
small, and the gauge dependence is proportionally suppressed. 

We note that a rigorous gauge invariant calculation could 
perhaps take Eq. (11) as a starting point. This might be an 
interesting avenue for future work, either in the context of HI 
or other, potentially more viable models of inflation that are 
embedded in gauge theories. 

5. CONCLUSION 

The recent detection of B-modes by the BICEP2 collabo-
ration represents a profound and exciting leap forward in our 
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FIG. I: The predicted energy scale of inflation. Vm1/11, over a range 
of Higgs boson masses (Al,,). for three values of the top quark mass 
(Aft ). and in the Landau gauge. Co 0. 
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FIG. 2: The energy scale of inflation. Via.  as the gauge parameter. 
egr. varies. We fix Aft = 170 GeV and show three values of Me. 

ability to explore fundamental physics and the early universe. 
If the measurement of r ra 0.2 is confirmed, then it is rea-
sonable to expect that, in the not-too-distant future, measure-
ments of the spectrum of primordial tensor perturbations will 
become possible. allowing further tests of inflation. And if 
the measured r can unambiguously be shown to be due to in-
flation. then this also substantiates the quantization of gravity 
[5 1 ]. 

Thus, future observations will provide significant con-
straints on particle physics and models of inflation. However 
the simple observation of non-zero r already signals the death 
knell for low-scale models of inflation. This includes the class 
of models captured by the potential in Eq. (3), and among 
these apparently Higgs Inflation. We have shown that r re 0.2 
essentially excludes canonical Higgs Inflation in the absence 
of extreme fine tuning. The Higgs field may live on as the 
inflaton but only with significant non-minimal variants of HI. 

In our analysis we have also drawn attention to the issue of 
gauge dependence in the Higgs Inflation calculation. We find 
that the energy scale of inflation acquires an artificial depen-
dence on the gauge fixing parameter by virtue of the gauge de-
pendence of the effective potential from it is extracted. How-
ever, we find this gauge dependence of the scale of inflation 
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is comparable to the dependence on other physical parameter 
uncertainties. which are themselves small. While this may be 
important for model building purposes, it does not affect the 
robustness of the fact that larger disfavors Higgs Inflation. 
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Appendix A: Standard Model Effective Potential 

The Standard Model effective potential is calculated (i) to 
the one-loop order. (ii) working in the MS renormalization 
scheme with renormalization scale p, and (iii) in the tenor-
malizable class of gauges (Re) as follows: 

Vergh ) = 0 °)(h) + 1,(1)(h) . (Al) 

The tree-level potential is 

V(o)(h) = 
4 
—h4 , (A2) 

and we can neglect the O(h°) and O(h2) terms for the pur-
poses of studying HI where the field value is large. The one-
loop correction is [55] (sec also [34] for gauge dependent fac-
tors) 

I (l)(h) = 
4 1642 

In — — 
12 fit° ( 

rii22 2/ p
6 fie 2 e 

+ (In
rii 

w — + 
3 
—

th Z~Mrn 

-s\ 4 167r2 p2 
0 4 16;r2 

+ 1 64 
4 1670 

on — 3) 2 
2 272 16 

114± (in 4±  3) 
p2 2/ 4 A

2 fit°_ cut 
4 16r2

(A3) 

( In 14,,, 3\ I L erL & 3

k p2 2) 416x2 tin  p2 5) 

where we have neglected the light fermions. We also neglect 
the contribution from the Higgs mass term. During inflation, 
the potential is very flat and this contribution is subdominant. 
The remaining SM fields, the massless photon and gluons, do 
not enter the effective potential at the one-loop order. The 
effective masses are 

Top Quark 
W-Bosons 
Z-Bosons 

Higgs Boson 

Neutral Goldstone 
Charged Goldstones 

Ghosts 
Ghosts 

ra z 44,12 h2 

rh2 = art.; h2 
IV in , 2 

ntz— 
9+ 

4ni h2
2  I-O 2in J. 

u 3A/ m ?ET 1 ‘ 224.642011,A
to A h2 rI4 G = riT 
7h2  h2 +11

- 9  ?TTnt = eaffiti2 
ew 

Mew = egantv 
(A4) 

where 1/2 = 1 + Ch2/1111, was given by Eq. (2). We denote 
the gauge fixing parameter by Car to distinguish it from the 
non-minimal gravitational coupling parameter, 

We implement the RG improvement as per 152-511. (See 
also the reviews [55, 56]). This consists of (I) solving the 
RG equations (RGEs) to determine the running parameters as 
functions of the RG flow parameter 1, (2) replacing the vari-
ous coupling constants in Kg with the corresponding running 
parameter. and (3) evaluating the RG flow parameter at the 
appropriate value t = 1. so as to minimize the would-be large 
logarithms. 

For the sake of discussion, let us denote 
the running parameters collectively as 4(t) 
{43(1), 42(t), oi(t), A(t), fh(t), (1)} where 92 = g and 
91 = 9'. Then the RGEs take the form fie, /(1 + -y) = do /dt 
with the boundary condition M' t = 0) = co. Here 7 is 
the anomalous dimension of the Higgs field. We neglect 
the running of the gauge-fixing parameter. 4r, since it is 
self-renormalized. This approximation is reasonable since 
we focus on 4-1- < 4r; for larger values of est-, perturba-
tivity becomes an issue. The Higgs field runs according to 
—7/1 = dh/dt where the anomalous dimension -y(t) is given 
as [571 

— 1 [ 9 ( 1 ) 92 ) 92 + 3Y21 (4ir)2 4 3 2 4 3 
it271 

— 
34 _ 

f 8Csf) 
 a2 

(4w(4w)° Lk 32 9r2 16" 2
— 431?  _5 I 992 + 17_2 + 8_21_2 + 27e ] (AS)

96 2 4 2 I2 YI

This last equation may be solved immediately along with the 
boundary condition h(t = 0) = Ae to obtain 

h(t) = et(t) (A6) 

where = — f cf, 7(9)/(1 + 7(e)) de and we seek to cal-
culate the effective potential as a function of h,.. The beta 
functions are independent of 4f • but the anomalous dimen-
sion is gauge-variant since the Higgs field is a gauge-variant 
operator. Finally, the renormalization scale runs according to 

= dµ/dt, which may be solved along with 11(t = 0) = po 
to obtain Q(t) = poet. 

We solve the one-loop beta functions using the Mathe-
matica code made publicly available by Fedor Bezrukov at 
http: //www. lox .ac ru/ - fedor/SH/ . The code im-
plements the matching at the electroweak scale to determine 
the couplings, c,,o. at the wale po = Mt in terms of the phys-
ical masses and parameters. The code was extended (I) by 
generalizing the anomalous dimension to the RE gauge as in 
Eq. (A5). and (2) by including the field-dependent factors of 

1+ 4(0,4102rp 
1 + (1 +64.(0)4(02422 (A7) 

in the two-loop beta functions, as indicated by 1131. The factor 
of s arises because of the non-canonical Higgs kinetic term. 
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and it appears in the commutator of the Higgs field with its 
conjugate momentum [9]. 

Finally the RG-improved effective potential is evaluated 
as in Eq. (Al) after making the replacements A —) A(t.). 
g -> §(t.), Mt„), p —> µ(t,), and so on. The RG 
flow parameter, ts, is chosen to minimize the would-be large 
logarithm arising from the top quark. This is accomplished by 
solving 

ut(021402  I 
20 +  ttlihtio2 )µ(t)2 let. 

which must be done numerically. Note that t, is an implicit 

(A8) 

function of the field variable, he. This can be seen by writing 

1 1 [figh2t. = — In 
[Dr(t.)2e2iltah2 ] 

— In • (A9) 
2 2µ0 2110 

Using Eq. (A8 , the commutator factor in Eq. (A7) is written 
as 

8 — El + 12t  it?  Mt? I
IRMA 

and the field dependence drops out. 
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